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PROJECT ABSTRACT 

SCOREwater focuses on enhancing the resilience of cities against climate change and urbanization by 

enabling a water smart society that fulfils SDGs 3, 6, 11, 12 and 13 and secures future ecosystem 

services. We introduce digital services to improve management of wastewater, stormwater and 

flooding events. These services are provided by an adaptive digital platform, developed and verified 

by relevant stakeholders (communities, municipalities, businesses, and civil society) in iterative 

collaboration with developers, thus tailoring to stakeholders’ needs. Existing technical platforms and 

services (e.g. FIWARE, CKAN) are extended to the water domain by integrating relevant standards, 

ontologies and vocabularies, and provide an interoperable open-source platform for smart water 

management. Emerging digital technologies such as IoT, Artificial Intelligence, and Big Data is used 

to provide accurate real-time predictions and refined information.  

We implement three large-scale, cross-cutting innovation demonstrators and enable transfer and 

upscale by providing harmonized data and services. We initiate a new domain “sewage sociology” 

mining biomarkers of community-wide lifestyle habits from sewage. We develop new water 

monitoring techniques and data-adaptive storm water treatment and apply to water resource 

protection and legal compliance for construction projects. We enhance resilience against flooding by 

sensing and hydrological modelling coupled to urban water engineering. We will identify best 

practices for developing and using the digital services, thus addressing water stakeholders beyond 

the project partners. The project will also develop technologies to increase public engagement in 

water management.  

Moreover, SCOREwater will deliver an innovation ecosystem driven by the financial savings in both 

maintenance and operation of water systems that are offered using the SCOREwater digital services, 

providing new business opportunities for water and ICT SMEs. 
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SUMMARY 

This report includes a review of types of sensors and their communication protocols, and data driven 

models commonly used in the water sector (more specifically from sewers and urban drainage 

systems). The specific requirements for the SCOREwater project case-studies can be found in 

Deliverable 1.3. The review comes from peer-reviewed journal papers and from grey literature, 

including outcomes generated by former financed EU projects. The review shows that many water 

quantity and water quality sensors exist in the market which allow for proper monitoring of water 

characteristics. Recent developments in communication technologies (hardware) make it possible to 

transfer data from the collected sensors installed underground and in isolated places (e.g. LoRa). A 

plethora of data-driven models have been applied to the water field to detect abnormal functioning 

of sensors, to optimize the performance of the system, etc. Even though, several data-driven models 

exist there are only a few Big Data platforms deployed in the water sector. The widespread 

implementation is limited by the availability of high-quality data and fit for purpose data-driven 

algorithms. The digitalization of the water sector is getting into the agenda of the International Water 

Association and funding is allocated through the H2020 programme. 
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1. PURPOSE OF A LITERATURE REVIEW 

This report describes the key elements of Big Data analytics and how these have been applied to 

sewer and urban drainage systems. The report includes a review of water quality and flow sensors, 

existing communication technologies (hardware and software) potentially applicable to the water 

sector, a description of existing data frameworks, and a review of data-driven models applied to 

sewer and urban drainage systems management and operation. The review comes from peer-reviewed 

journal papers and from grey literature, including outcomes generated by former financed EU 

projects. An outlook is provided in the last chapter identifying the importance of FIWARE framework 

application within the SCOREwater, and indicating innovation needs which are of paramount 

importance during the development of the project. The purpose of this literature review is to set up 

the scene and provide an introduction to any partner and stakeholder willing to learn about the basics 

of Big Data analytics in the water sector, specifically in sewers and urban drainage systems. The 

specific requirements for the SCOREwater project can be found in Deliverable 1.3. 

 

2. INTRODUCTION: BIG DATA AND THE WATER SECTOR 

Climate change, mass urbanization and ageing infrastructure challenges cause inadequate system 

performance. Current urban water infrastructure is vulnerable to excessive rainfall, demands high 

capital and operational costs and deals with complex technologies and pipe networks. Hence, there 

is an urgent need for innovation and a change in the current urban water management (UWM) 

framework to provide more sustainable UWM services (Hering et al., 2013). The promise of collecting 

and utilizing large amounts of data has never been greater in history of UWM. Big data analytics 

provide a unique opportunity for the water sector to obtain reliable and relevant information at high 

spatial and temporal resolution. Big data analytics can be used for proper decision-making processes, 

as well as be considered as a catalyst for social change. Big data analytics may help to extend the 

service life of existing urban water infrastructure by proactive maintenance and optimized operation 

(Karl and Wyatt, 2018) and partially alleviate their investment needs.  

The transition towards smart UWM services (using Big data analytics), the so-called digitalization of 

the water sector, is evident in drinking water systems, with the development of smart water supply 

networks. A review (executed in 2018) of the EU-funded projects which belong to the ICT4Water 

cluster shows that the potential of Big data analytics has been mostly demonstrated in drinking water 

distribution network operation and management and drinking water metering (13 projects out of 42 

as can be seen Figure 1). The expansion of Big data analytics to other elements of the urban water 

cycle is being stimulated by the International Water Association through the newly launched IWA 

Digital Water Programme, which is a gateway for water utilities to access knowledge on research, 

technology and innovation in the digital water space (Sarni et al., 2019). The 2019 calls in H2020 on 

the digitalization of the water sector also include projects which focus on drainage systems and 

wastewater treatment. 
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Figure 1. Classification of ICT4Water cluster projects 

The transition towards digitalization of UWM cannot be achieved without the development and 

deployment of Big data platforms which integrate latest developments from the sensor manufacturers 

industry, remote-sensing, information and communication technologies, with UWM applications. The 

aim of this report is to describe the different elements required to develop effective Big data 

platforms and provide examples applied to enhance the performance of urban drainage (UDS) and 

sewerage systems, which is the scope of the SCOREwater project. 

 

3. BIG DATA AND PLATFORMS 

Big data are information assets characterized by high volume, velocity, variety and veracity. Fast 

advances in sensors, high-resolution remote sensing techniques, smart information and 

communication technologies and social media have contributed to the proliferation of big data. Big 

data brings about new opportunities for data-driven discovery, but it also requires new forms of 

information processing, storage, retrieval, as well as analytics. Overall, requires the development of 

Big data platforms made of different layers. The first layer includes the different data sources (see 

section 3.1); these sources can be manually updated to the platform or can be automatically uploaded 

by means of communication technologies; the latter include a physical layer (section 3.2) and a 

software layer which includes the IoT backend and the data harvester (section 3.3), which in Europe 

is deployed using FIWARE). The FIWARE platform brings a number of Deployment tools easing the 

deployment and configuration of FIWARE or third-party components and their integration with 

FIWARE Context Broker technology. The Context Broker is included in the Core context management 

layer (section 3.4). The Context Broker contains information regarding the current context. The 

Context Broker works according to the publish-subscribe mechanism: other components (e. g. a 

component to create a time series database) subscribe to updates sent out by the Context Broker. 

On top of that we have the context processing, analysis and visualization layer (section 3.4).  
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Figure 2. Typical architecture for a Big Data platform applied to the water sector. An interrelation 
of the elements is shown: Devices/data sources, connectivity/network, data framework intelligence 
framework and data market. 

In the following sections, the state-of-the art for each of the elements is described. 

 SOURCES OF BIG DATA 

Urban drainage and sewerage systems Big Data may originate from a) multi-sensor data collected 

from ground-based monitoring networks and Internet of things (IoT), b) large-scale datasets collected 

from field experiments via multiple instruments, c) data simulated by system models, d) high-

frequency data products derived from Earth observation systems, and e) crowdsourced data from 

social media and citizen science (Sun and Bridget, 2019). 

This review focuses on the multi-sensor data collected from ground-based monitoring networks. 

Smart management of sewage networks relies on sensors that provide on-line data and actuators from 

installed equipment in the network (e.g. pumps, valves, etc.). A review of existing sensors in sewers 

and urban drainage systems is provided in this section. Real time control of urban water infrastructure 

is not the focus of SCOREwater; hence, the description of actuators is not included in this review. 

Although reliable equipment has become available nowadays, the wrong choice of monitoring 

equipment is one of the main factors causing the improper working of sewers and UDS. In terms of 

estimating water quantity (i.e. flows) a plethora of sensors is available, with capacitive probes, 

pressure sensors, ultrasonic probes or microwave sensors, which have been successfully implemented 

to monitor the water level, and ultrasonic or electromagnetic meters to monitor the water flow. 
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On-line sensors measuring temperature, oxidation-reduction potential, pH, dissolved oxygen, 

conductivity and turbidity have proven their reliability and robustness in drainage systems 

(Vanrolleghem and Lee 2003). Multi-wavelength spectroscopy in the ultraviolet visible range (UV-Vis) 

has been used for wastewater and stormwater quality monitoring (Van der Broeke et al. 2006, 

Lourenco et al. 2008, Torres and Bertrand-Krajewski 2008), since most organic compounds and some 

soluble minerals (such as nitrate/nitrite) absorb in the UV-Vis region (Vaillant et al. 2002). On-line 

UV-Vis sensors have already been used for wastewater treatment plant operation (Vanrolleghem and 

Lee 2003, Schuetze et al. 2004) and robust submersible commercial devices are also becoming 

available. However, their application in UDS has scarcely been reported (Gruber et al. 2006, Rieger 

et al. 2006, Torres and Bertrand-Krajewski 2008). In UDS the hydraulic conditions are extremely 

variable, fouling may occur and there is limited access for maintenance. These circumstances may 

contribute to the collection of inaccurate data. Additionally, wastewater in UDS may not present a 

homogenous composition along its cross section. This creates a challenge for spectrophotometry, 

which can be minimized by choosing a location with a turbulent flow. In drainage systems with storm 

water connections, flow may change rapidly, modifying the water quality matrix (Maribas 2008), 

increasing fouling probability and worsening access conditions, which adds pressure to in-line 

monitoring. Statistical models will then play a key role since they can enhance the scope and 

significance of acquired spectral data. 

Annex Table 1 provides a list of on-line sensors available for the monitoring of flows, levels and water 

quality in urban drainage and sewerage systems with a detailed description. 

Besides the data coming from sensors installed in the different applications the Big Data platform 

can integrate data coming from other sources; for example it can connect to 3rd parties platforms 

and exchange data by using an Application Programming Interface (API). In many cases it is not 

necessary to store all the relevant information in a specific Big Data platform if that information is 

already available in another platform. Hence, it makes sense to develop APIs which allow for the 

exchange of data between platforms.  The API is executed whenever there is a need to recover the 

required data.  

 COMMUNICATION PHYSICAL LAYER 

This subsection describes the physical layer for the data communication. It consists of the electronic 

circuit transmission technologies of a communication network. It is a fundamental layer and can be 

implemented through a great number of different hardware technologies with widely varying 

characteristics (Table 1).  

Table 1. Hardware technologies for data communication 

Hardware data communication  Pro Con 

Wired connectivity Low maintenance cost 

High data throughput 

Installation cost 
Inflexible 

3G/4G/5G/LTE Flexible 
Mid data throughput 

Network coverage 
Short battery life 

WiFi Flexible 
High data throughput 
Cheap 

Network coverage impossible 
Short battery life 

LoRa Flexible 
Long battery life 
Cheap 
Network coverage 

Low throughput 

NB-IoT Flexible 
Cheap 
Network coverage 

Short battery life 

Bluetooth Flexible 
High data throughput 
Cheap 

Network coverage impossible 
Short battery life 

6LOPAN Auto configurable mesh network Inflexible 
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The specificities of sewers and UDS makes the data communication challenging. Sewer networks are 

widespread; as an example Spain counts on 90,000 Km of sewer pipes, a distance which is twice the 

the equatorial circumference of Earth. The sensors are normally installed underground and in isolated 

places with no electricity connections. Hence, the main challenge is to provide sensors with 

connectivity which can transmit at long distances, with low battery consumption. The main 

challenges are deployment cost, maintainance cost and flexibility. Hence, the LoRa technology is 

gaining popularity in the field of monitoring sewer systems and UDS. 

 INTERFACE TO IOT AND DATA HARVESTER 

3.3.1. COMMUNICATION PROTOCOLS AND DATA MODELS 

Despite a promising technological scenario, the water domain is characterized by a low level of 

maturity concerning the standardization of Big Data limiting the build-up of knowledge across 

domains and platforms. This is due to the fragmentation of the sector, the heterogeneous water data 

sources and platforms, and no holistic vision. Therefore, the legacy systems of different stakeholders 

difficult the integration with third parties due to non-standard communication protocols and data 

models. Improving access to data and fostering open exchange of water information is foundational 

to solving water resources issues. The development of system standards is essential for smart water 

solutions that should ensure interoperability of solutions.  

Existing water Big Data platforms rely on a service-oriented approach, where web services connect 

with different involved systems using non-standardized XML/SOAP (Anzaldi, 2014). This kind of 

architecture requires most of the human input to adapt the XML/SOAP interconnection when the 

network grows due to the lack of discovery services to support plug and play capabilities (Malewski, 

2013). To overcome this deficiency, the latest approaches use the OGC stack complemented by data 

models such as WaterML2 and O&M (Anzaldi, 2014). Also, novel initiatives of European Commision 

have focused their efforts on creating interoperable platforms like FIWARE (Zahariadis, 2014), which 

are capable of consuming heterogeneous information across multiple IoT standards (MQTT, AMQP, 

DDS.) and publishing the knowledge through open and dynamic interfaces like NGSI and NGSI-LD. As 

well as, standardization organizations such as ETSI, OASIS, OGC, OMA are addressing these challenges 

providing open interfaces and extending vocabularies for the water sector (Anzaldi, 2018). 

Annex Table 2 includes a list of the relevant communication protocols used on water sector is 

presented. The table includes the field of application of the standard, a brief description and 

references to the literature where the standard is used. 

The OPC-UA standard1, which supports a request/reply communication with process automation 

systems, is widely used in the industrial sector, but it delegates the telemetry transfer to 

publish/subscribe mechanisms in order to optimize the data communications. Therefore, MQTT, 

AMQP and DDS protocols are responsible for this communication in the OPC-UA standard. Also, it is 

important to note that Omron2 and Siemens3 PLCs, that integrates OPC-UA standard, uses MQTT to 

transfer data. 

 
1 HYPERLINK "https://opcfoundation.org/about/opc-technologies/opc-ua/"https://opcfoundation.org/about/opc-
technologies/opc-ua/ 
2 http://blog.omron.eu/a-practical-illustration-of-iot-and-industry-4-0/ 
3 https://support.industry.siemens.com/cs/document/109748872/fb-lmqtt_client-for-simatic-s7-cpu?dti=0&lc=en-WW 

http://blog.omron.eu/a-practical-illustration-of-iot-and-industry-4-0/
https://support.industry.siemens.com/cs/document/109748872/fb-lmqtt_client-for-simatic-s7-cpu?dti=0&lc=en-WW


D1.1 Requirement specification (Hardware, software, standards), v 2, 28 September 2020  

 

 
 

p. 15 

The communication protocols presented in Annex Table 2 can be used to connect multiple devices in 

a distributed network through wired and wireless communication technologies (for example, MQTT, 

AMQP, DDS and CoAP) or Server to Server (for example, JMS, RESTful, OGC SOS, Digital Delta, FIWARE 

NGSI and NGSI-LD). All of them are available for free thanks to open source licences. AMQP, MQTT, 

JMS are brokered-based architecture. Therefore, publishers post messages to a trusted message 

routing and delivery service, or broker, and subscribers register subscriptions with the broker which 

also performs any message filtering. Moreover, they facilitate the networks’ scalability deploying 

more instances of the broker. Instead, REST/HTTP, Digital Delta and CoAP are based on a typical 

Client-Server architecture where client invokes the methods of the server. FIWARE NGSI and FIWARE 

NGSI-LD have a hybrid architecture, offering request-reply and publish-subscribe interfaces. NGIS, 

NGIS-LD, OGC SOS, DDS, REST/HTTP, Digital Delta and CoAP are interoperable, hence their messages 

can be exchanged and understood by different implementations. Instead, MQTT, AMQP and JMS are 

not completely interoperable. MQTT is agnostic to the content of the payload and does not specify 

the layout or how data is represented in the message. Therefore, the exchange of the messages is 

sure, but the serialisation of the content requires a shared scheme. AMQP messages adds information 

about the layout in the “content-type” and “content-encoding”, but it is only a convention. 

Therefore, the data serialisation scheme should to be understood by the publisher and subscriber to 

ensure that the data payload is interpreted. JMS does not provide a standard for interoperability 

outside of the Java platform. All messaging technologies have a comparable performance in a simple 

point-to-point configuration, although broker-based architectures (MQTT, AMQP and JMS) adds an 

additional overhead in the communications. MQTT, AMQP and JMS do not provide automatic 

discovery, unlike DDS, NGIS, NGIS-LD, Digital Delta and OGC SOS, this means that configuring a 

distributed system that uses one of these technologies is through the broker. CoAP, NGIS, NGIS-LD, 

Digital Delta and OGC SOS support a client/server programming model based on a Service Oriented 

Architecture, SOAP for OGC SOS and RESTful for the others, in which resources are server-controlled 

abstractions made available by an application process and identified by Universal Resource Identifiers 

(URIs). Clients can manipulate resource using HTPP: GET, PUT, POST and DELETE methods. It also 

provides in built support for resource discovery as part of the protocol. AMQP, JMS, NGIS, NGIS-LD 

and OG SOS provide transactional modes of operation, hence they can take part in a multi-phase 

commit sequence. The trusted and fault-tolerance of the messaging technologies is also important. 

JMS, OGC SOS, NGSI and NGSI-LD do not provide an API for controlling the privacy and integrity of 

messages. Then, the security is provided by the JMS, OGC SOS vendors, and FIWARE GEs module for 

NGSI. MQTT v3.1 and AMQP provides authentication facilities and the encryption of data exchanged 

can be handled using SSL or TLS. DDS defines the Security Model and Service Plugin Interface (SPI). 

It customizes the behaviour and technologies that the DDS implementations use for Information 

Assurance, specifically allowing customization of Authentication, Access Control, Encryption, 

Message Authentication, Digital Signing, Logging and Data Tagging. RESTful uses asymmetric 

cryptography for authentication of key exchange and symmetric encryption for confidentiality 

through SSL or TLS. CoAP uses Datagram Transport Layer Security (DTLS) that is equivalent to SSL/TLS 

over UDP. Finally, all the standards are supported by FIWARE. 

Annex Table 3 presents a summary of the highlights of each communication protocol. Data models, 

such as ontologies and schemas, promote interoperability and play a prominent role in the World 

Wide Web Consortium. They also play a role in the IoT and linked data fields, where they assist data 

contextualization, reduce discovery and consistency. Data models describe concepts, relationships, 

data properties within a domain, in a machine-readable manner, being key in knowledge sharing. 

Annex Table 4 summarizes the most relevant water data models, including schemas and ontologies 

identified on the literature review. Table 2 provides an analysis of each identified data model 

considering: the richness, quantity of entities and properties; the formalization, how the data model 

is implemented; the standardization organization involved in the development of the data model; 

the licensing model adopted by the data model and the most relevant dependencies, that is, the data 

models imported. 
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Table 2. Analysis of relevant water data models 

Data Model / 
Ontology 
 

Richness Formalization Standardization 
Entity 

Licencing 
Model 

External 
Dependencies 

WaterML2 663 elements 
19 attributes 

XSD Schema OGC Open Source GML 
OM 

HY_Features 452 Individuals  
282 Classes 
403 Properties 
6239 Axioms 

OWL/RDF OGC Open Source Geosparql 
Skos 
Sf 
Gml 
iso19150 
iso19115 
iso19103 

Digital Delta 
data models 

13 elements 
66 attributes 

RAML HydroLogiv, 
Nelen & 
Schuurmans, 
Deltares 

Open Source GeoJSON (GRFC 
7946) 
 
 
 

HydroNET4 6 elements 
10+ attributes 

Swagger 
OpenAPI 
specification 

 - NetCDF-CF 
(http://cfconv
entions.org/), 
GeoJSON (GRFC 
7946),  

RiverML - XSD Schema 
(based on 
WaterML) 

OGC Open Source WaterML 2.0 
GML 
OM 

SWEET 2147 
Individuals  
4543 Classes  
363 Properties 
25057 Axioms 

OWL ESIP 
Foundation 

Open Source - 

GWML2 757 elements 
19 attributtes 

XSD Schema OGC Open Source GeoSCiML  
OM 

O&M 639 elements 
19 attributes 

XSD Schema OGC Open Source GML 
GMD 

HydroML 139 elements 
3 attributes 

XSD Schema National Water 
Information 
System of the 
Water Resource 

Open Source  

INSPIRE 717 elements 
19 attributes 

XSD Schema European 
Commission 

Open Source GML 3.2.1 

FIWARE Data 
Models 

26 elements 
34 attributes 

JSON ETSI Open Source - 
 

SAREF4WATR On 
development 

OWL ETSI Open Source - 

 

  

http://cfconventions.org/
http://cfconventions.org/
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3.3.2. DATA HARVESTER 

Data harvesting uses a process that extracts and analyzes data collected from online sources. The 

term data harvesting actually goes by other different terms. They include web mining, data scraping, 

data extraction, web scraping, and many other names. Data harvesting has grown in popularity in 

part because the term is so descriptive. It derives from the agricultural process of harvesting, wherein 

a good is collected from a renewable resource. Data found on the internet certainly qualifies as a 

renewable resource as more is generated every day. Data harvesting can be very beneficial, especially 

when using a third-party service. The data gathered from websites can provide organizations with 

helpful information and insights that can inform their business practices and help them reach out to 

prospective consumers. With so much data available on the web, data harvesting has become a 

popular and at times necessary tool so companies have a more thorough knowledge of marketplaces, 

consumers, and competitors. 

3.3.3. FIWARE 

As FIWARE is the approach followed in SCOREwater we provide a more detailed description in this 

subsection. FIWARE is an open source initiative defining a universal set of standards for context data 

management which facilitate the development of Smart Solutions for different domains such as Smart 

Cities, Smart Industry, Smart Agrifood, and Smart Energy. The European Innovation Partnership for 

Smart Cities & Communities (EIP-SCC) and the Espresso-project have described a capabilities map 

with all the different data-components for FIWARE.  

The FIWARE Catalogue is a curated framework of open source platform components which can be 

assembled together and with other third-party platform components to accelerate the development 

of Smart Solutions. The main and only mandatory component of any “Powered by FIWARE” platform 

or solution is the FIWARE Orion Context Broker Generic Enabler, which brings a cornerstone function 

in any smart solution: the need to manage context information, enabling to perform updates and 

bring access to context. Building around the FIWARE Context Broker, a rich suite of complementary 

FIWARE components are available, dealing with: a) Interfacing with the Internet of Things (IoT), 

Robots and third-party systems, for capturing updates on context information and translating 

required actuations; b) Context Data/API management, publication, and monetization, bringing 

support to usage control and the opportunity to publish and monetize part of managed context data 

and c) Processing, analysis, and visualization of context information implementing the expected 

smart behavior of applications and/or assisting end users in making smart decisions. Existing FIWARE 

data frameworks are described in Table 3. 

https://eu-smartcities.eu/sites/default/files/2017-09/EIP_Mgnt_Framework.pdf
http://espresso.espresso-project.eu/wp-content/uploads/2018/04/EIP-SCC-OUP-WS2-Reference-Architecture-and-Design-Principles-Main.pdf
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Table 3. FIWARE data frameworks 

Data 
framework 

Field of application Description Reference 

FIWARE 
Orion 
context 
broker 

Real time data The Orion Context 
Broker holds 
information about the 
current context from 
sensors and IoT-
devices. 

https://www.
fiware.org/de
velopers/cata
logue/ 

FIWARE 
Cygnus/Quan
tumLeap/Dra
co 

Cygnus, QuantumLeap and Draco 
subscribe to updates from a context 
broker and persist these, thus creating a 
time series database. Depending on the 
application at hand, the most 
appropriate one should be selected.  

Comparable 
components to support 
data persistence 
mechanisms for 
managing the history 
of context 

https://www.
fiware.org/de
velopers/cata
logue/ 

CKAN Open data portal platform, services 
catalogue and metadata registry 

For managing static 
open data and 
describing metadata. 
Within FIWARE 
extended with plugins 
to support data market 
and context data. 

https://ckan.
org/ 

IDAS IoT-agents for interfacing with specific 
systems  

Interfaces to make it 
easier to connect with 
IoT-devices 

https://www.
fiware.org/de
velopers/cata
logue/ 

API-
management 

Monitization, monitoring and access to 
data. Managing API's 

API-management 
enables policies for 
managing access to 
data, including billing, 
and metering 

https://www.
fiware.org/de
velopers/cata
logue/ 
https://www.
redhat.com/e
n/technologie
s/jboss-
middleware/3
scale 

Process, 
analyze and 
visualize 

   

 

  

https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://ckan.org/
https://ckan.org/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.fiware.org/developers/catalogue/
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
https://www.redhat.com/en/technologies/jboss-middleware/3scale
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 BIG DATA ANALYTICS 

Big data platforms include a layer specific for data analytics; data analytics can be based from simple 

statistics to artificial intelligence (AI). The layer provides improved decision support to stakeholders, 

enabling real time input and data-driven services that increases the possibilities to ground decisions 

on valid data. In the literature, the terms Artificial intelligence (AI), Machine learning (ML) and deep 

learning (DL) are sometimes used interchangeably. AI is a general term referring to the use of 

computers/machines to imitate human-like behaviors, ML is a branch of AI that aims to train machines 

to learn and act like humans and to improve their learning in autonomous fashion through data fusion 

and real-world interactions, while DL refers to a newer generation of ML algorithms for extracting 

and learning hierarchical representations of input data (Sun and Bridget, 2019). 

AI’s ability to constantly adapt and process large amounts of data in real-time makes it a promising 

tool for managing water resources in an ever-changing environment. Data-driven methods are being 

applied by the research community to the field of water urban management (Newhart et al., 2019). 

The water treatment field has benefited from model developers and process engineers who have 

helped produce mechanistic models trying to describe the pollutants transformation processes 

occurring in the drinking water plants, distribution systems, sewers, WWTPs, and rivers. Such models 

are being complemented with data-driven models (Eggimann et al., 2017; Newhart et al., 2019). In 

the field of wastewater treatment, the research community has been testing and developing methods 

for fault detection, isolation and diagnosis, for process modelling, for control, etc. Artificial Neural 

Networks and Principal Component Analysis are the methods that have been widely tested in this 

field. Other examples of methods are Fuzzy logic, Clustering, Independent Component Analysis, 

Partial Least Squares, self-organizing maps, Regression, Support Vector Machines, and Qualitative 

features detection (Corominas et al., 2018). However, these methods remain in the scientific domain 

and has been little knowledge transfer to industry. The main limiting factor for widespread 

implementation of these methods at full-scale is the limited capabilities to ensure the data is 

collected is of high quality. Even though there has been large progress in the development of water 

quality sensors they are exposed to extreme environmental conditions (e.g. extreme hydraulic 

conditions, large turbidity which can cause clogging, fouling or blocking due to sand). There is no 

sense in having a great data driven model if the data that feeds the model is of poor quality.  

Below, the state of the art of the three main issues addressed throughout the SCOREwater project 

are reviewed: Flash flood predictions to anticipate disasters in endangered areas, predictive 

maintenance on Sewer systems to improve urban resilience, and finally prediction of water quality 

to anticipate pollution problems and stormwater treatment. A summary can be found in Annex Table 

5. 

Floods are among the most destructive natural disasters, which are highly complex to model. The 

research on the advancement of flood prediction models contributed to risk reduction, policy 

suggestion, minimization of the loss of human life and reduction of the property damage associated 

with floods. These models follow different strategies in order to contribute to the problem, using 

short-term or long-term flood predictions, or geographical prediction to identify the flood alert areas. 

In hydrology, the definitions of short-term and long-term in studying the different phenomena vary. 

Short-term predictions for floods often refer to hourly, daily and weekly predictions, and they are 

used as warning systems. On the other hand, long-term predictions are mostly used for policy analysis 

purposes and often refer to prediction time greater than a week. 

Short-term lead-time flood predictions are considered important research challenges, particularly in 

highly urbanized areas, for timely warnings to residences so to reduce damage (Zhang, 2018). In 

addition, short-term predictions are beneficial to water resource management. Even with the recent 

improvements in Machine Learning methods, short-term predictions aren’t an easy task (Badrzadeh,  

2015). In order to solve this kind of problems, the modeling methods can be single or hybrid. Single 

methods use one Machine Learning algorithm in order to predict an objective (Yu, 2017), while the 

hybrid methods use the Machine Learning algorithm with the addition of a statistical algorithm or 

hydraulic model (Jimeno, 2017).  
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Some examples of single short-term prediction through Deep Learning are (Yu, 2017), (Saghafian, 

2017) or (Sahoo, 2006), which use ANN and variations in order to solve flow related problems. There 

are more Machine Learning techniques used, specifically Support Vector Machines (SVM), Ensemble 

Models (ELM) and Random Forest Regressors (RF) (Yu, 2017), (Cheng, 2009). These examples use 

environment variables to predict objective flood variables like water level, surge level, streamflow, 

rainfall, and structural condition.  

Concerning to the hybrid short-term prediction, they improve the quality of the prediction, in terms 

of accuracy, generalization, uncertainty, longer lead-time, speed and computation costs. Some 

examples are used to flood warning (Doycheva, 2017), peak flow prediction (Jimeno, 2017), rainfall 

prediction (Chang, 2014) (French, 2017) (Young, 2017), among others.  

Long-term flood prediction is of significant importance for increasing knowledge and water resource 

management potential over longer periods of time, from weekly to monthly and annual predictions. 

Many notable ML algorithms have been studied in the past decade, but it is still not clear which ML 

methods are the best for long-term predictions (Mosavi, 2018). 

The last type of flood predictions is spatial prediction of flood-susceptible areas. Various hydrological 

methods have been studied for determining flood-susceptible areas in the watersheds, but these 

methods face numerous difficulties because of limitations and high costs. For this reason, 

environmental analyses in the form of GIS is also being researched (Rahmati, 2015). Machine Learning 

for spatial mapping is a methodology with an evolving research path and with good success rate, 

(Rahmati, 2016) purpose a Random Forest and Maximum Entropy solution for groundwater mapping 

with an area under the curve of 83.1% and 87.7%, respectively, becoming effective models. Finally, 

(Haghizadeh, 2018) explain an approach using frequency ratio and maximum entropy models in order 

to do spatial prediction of flood-susceptible areas in Iran. Their result was an area under the curve 

of 74.3% and 92.6%, respectively, meaning the path using machine learning can be innovative. 

Sewer networks are among the most critical urban infrastructures, suffering from a huge variety of 

problems. Studies have confirmed possible solutions to sewer overflow, sanitary sewer condition 

deterioration, and sewer chokes by fats, grease or other anomalies by applying Data-driven models. 

Sewer Overflow is a major problem to be addressed by many cities. While understanding the behavior 

of the sewer system through proper urban hydrological models is an effective method for 

management, conventional deterministic methods rely on physical principles which make the 

computation expensive and not usable for short time prediction. (Zhang, 2018) propose a Deep 

Learning model that aims at forecasting sewer overflow events from multiple sewer structures 

simultaneously in near real-time at a Norwegian citywide level. In order to construct the model, 

detailed information about the studied sewer system (a small number of 8 points in the sewer 

network), rainfall data and sewer hydrological data such as flow or water level was provided. The 

research demonstrates that the multi-task approach is generalized better than single-task approach, 

furthermore, the GRU and LSTM are especially suitable to capture the temporal and spatial evolution 

of the sewer network event and superior to other methods. 

Sanitary sewers, as a part of wastewater infrastructure systems, are designed to collect the sanitary 

sewage from domestic, industrial, commercial and public users and convey it to a treatment plant. 

(Mohammadi, 2019) introduce a Machine Learning methodology to predict the condition of sanitary 

sewer pipes based on historical inspection data from the City of Tampa. Information about pipe 

materials, physical, environmental and operational variables were utilized to build the deterioration 

model. Using logistic regression, the results predict with an accuracy of 81.4% and the most important 

variables were pipe age, material, diameter, length and water levels, as they affect the most to the 

condition of the pipe over time. (Lin, 2015) propose a Bayesian nonparametric approach, namely the 

Dirichlet process mixture of hierarchical beta process model for water pipe failure prediction. In this 

research, the pipe attributes of diameter, length, laid date, material, protective coating, soils, and 

traffic intersections are used for the predictive model of three regions. Using the algorithm HBP 

(hierarchical beta process) and some variations of this algorithm achieves an accuracy of 82.67%, 

74.51% and 78.37% of each region respectively. 
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Sewer chokes are blockages typically caused by external factors such as fats, grease, tree roots and 

foreign items in the pipes such as wet wipes. Chokes may lead to sewage overflows through 

designated sewer system overflow points or uncontrolled overflows into public or private property. 

(Cameron, 2017) worked on Machine Learning solutions for the Sydney Water sewer networks, using 

a predictive model composed by the variables of tree roots, pipe properties, past chokes, climate 

data, buildings and behavior data in the zone. (Bailey, 2016) present the development of an ensemble 

of decision tree models produced using the data from the wastewater network of Dwr Cymru Welsh 

Water to predict the likelihood of blockage and inform the prioritization of proactive maintenance. 

The data used to model was the sewer diameter, the sewer length, the number of property and food 

producer connections per sewer, information on the property types and ages present, and the water 

velocity. The results of this research were around 0.7% area under the curve for the different inputs 

of information. 

Water pollution is a serious problem in the world which threatens human health, ecosystems, and 

plant life. Prediction of water quality is one of the main concerns in water resource and 

environmental systems, as it helps control water pollution. There is research in urban water quality 

prediction, water quality around construction areas, prediction of sediment toxicity from sewers and 

much more. 

Urban water quality refers to the physical, chemical and biological characteristics of a water body, 

and several chemical indexes can be used as effective measurements for the water quality in current 

urban water distribution systems. (Liu,  2016) deploy several monitoring stations throughout the city’s 

water distribution system to provide real-time water quality reports. In order to identify water 

quality, turbidity, residual chlorine, and pH are evaluated in the different points of interest, being 

the Residual Chlorine the final water quality index. To predict these properties, pressure, 

meteorology, flow, spatial factors like pipe or road networks and pipe properties like age, material, 

and length were used for the model construction. In order to predict the water quality of a station 

by fusing multiple sources of urban data, a novel framework using spatio-temporal multi-view multi-

task was presented. Related to the investigation, (Zheng, 2015) purpose various spatio-temporal 

models that combine multiple datasets in order to identify city anomalies in a spatial network. Their 

research can be used to identify water quality anomalies in different points of interest of a city. 

Sediment toxicity from sewers is important, even more, when there are stormwater provoking 

overflows. (Schertzinger, 2019) explain their research on urban wet weather discharges, which 

involves sediment pollution from habitats destruction and other pollutants from UWWDs such as 

metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides or flame retardants. 

With the help of data from different locations which include sediment samples, maintenance 

information, sediment contact assays, ecological risk assessment, and statistical analysis. This 

research ends showing that combined sewer overflows (CSO) have an impact on the toxic potential 

as well as on the oxygen demand of downstream located sediments, showing the most important 

variables for future forecasting studies. 

With the rapid development of urbanization, increasing impervious areas interrupt stormwater 

infiltration channels and greatly increase stormwater runoff volume and peak flow. In addition, due 

to human activities, atmospheric deposition and other factors, a large number of pollutants 

accumulate and are discharged into the municipal stormwater sewer by stormwater runoff flushing. 

(Wang, 2015) research shows the impact of adsorption of heavy metals by construction wastes and 

an effective new way for resource utilization of city construction waste. On the other hand, (Cha,  

2017) propose a machine learning method for building demolition waste and develop a demolition 

waste generation rate. The study uses data from 796 low-rise residential buildings immediately before 

the building demolition process to acquire the data for characteristics and material quantities for 

each building. The variables used were region, building type, type of structure, wall material, roof 

material and base construction materials like mortar or concrete. The prediction of concrete 

generation was successfully predicted by using a decision tree variation called CHAIN with a 98’9%. 
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 DATA MARKET 

As the gigabytes, terabytes, and petabytes of unstructured information pile up, most UWS organizations 

lack actionable methods to tap into, monetize, and strategically exploit this potentially enormous new 

value. McKinsey research reveals that companies currently underutilize most of the IoT data they collect. 

One effective way to put IoT data to work and cash in on the growing digital bounty involves offering the 

information on data marketplaces to third parties. Digital marketplaces are platforms that connect 

providers and consumers of data sets and data streams, ensuring high quality, consistency, and security. 

The data suppliers authorize the marketplace to license their information on their behalf following 

defined terms and conditions. Consumers can play a dual role by providing data back to the marketplace. 

Third parties can offer value-added solutions on top of the data the marketplace offers. For example, 

real-time analytics can make consumer insights more actionable and timelier than ever before. The 

marketplace also has an exchange platform as a technical base for the exchange of data and services, 

including platform-as-a-service offers. 

A successful data market requires i) Developer support by means of documentation and examples, ii) API 

management by means of billing, metering, security and iii) API provisioning by means of NGSI (FIWARE), 

TMForum Open APIs, or other. Following we provide a more detailed description of security and 

standardization, which are two key elements for the data market. 

3.5.1. SECURITY  

There are many levels of security to take into account.  

Hardware design of IoT devices and communication. As the number of Internet of Things (IoT) devices 

have been predicted to surpass 50 billion by 2020, attackers’ attention has also shifted towards tools, 

techniques, and procedures to exploit IoT networks. Hence, IoT security and privacy are two urgent 

challenges. The security mechanism ensures the correctness and integrity of the data which is being 

communicated through the communication devices and gateways, that is, they are sent to its destination 

without any distortion. Therefore, communication protocols, platform and hardware communication 

devices requires from security mechanisms such as: (i) Authentication and Authorization to make sure 

that only trusted clients can connect and don’t interfere with each other by using user/password, 

private/public keys pairs, or X509 certificates and (ii) Transport Layer Security (TLS) to ensure that 

eavesdropper can’t read and intercept the messages for transport layer encryption. It is important to 

note that FIWARE and the most relevant IoT communication protocols (MQTT and AMQP), supports 

authentication and authorization mechanisms like user/password, private/public keys and X509 

certificates. Moreover, all of them also integrate TLS mechanisms to encrypt the messages. 

Components within the Big data platform. All components within the Big data platform should be based 

on well-maintained open source libraries whenever possible. The latest security updates of those 

libraries should be installed. 

API’s. API's are the corner stone of any platform. There are multiple ways to secure API's and address 

possible vulnerabilities. The Open Web Application Security Project (OWASP) keeps track of a “cheat 

sheet” with all kinds of API-vulnerabilities.  A REST API should for example always use HTTPS, never 

store readable passwords in a database or a configuration file, never disclose sensitive information in a 

URL, restrict access to methods which are not used, use input validation (e. g. always verify the user 

actually enters an integer when the system expects an integer) to make sure that the user does not 

enter values which will break down the system, not disclose information of the internals of the system 

in error messages, use proper HTTP response codes and content types etcetera. This article provides a 

good overview of best practices for REST API security. A solid API-management and API-provisioning 

solution should support a wide range of security measures like encryption, authentication, and 

authorization protocols. 

User interface. The user interfaces should not allow end-users to enter sensitive information (for 

example a password) in a human readable fashion.  

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/creating-a-successful-internet-of-things-data-marketplace
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://restfulapi.net/security-essentials/
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End user. End users should be aware of security risks. This involves awareness of phishing and social 

engineering (do not click suspicious links, inform the IT department of scams), access, passwords and 

connection (use strong passwords, do not share login credentials with co-workers), device security (do 

not connect unsecured devices to the company network) and physical security (do not leave devices 

unattended, always lock your computer when stepping away from your desk) as described by 

continuum.net.  

 

4. OUTLOOK 

 POTENTIAL VALUE UNLOCKED BY BIG DATA IN THE SEWAGE 

TREATMENT SECTOR 

Big data has the potential to create trillions of dollars of value across the economy (Kato, 2018). It is 

estimated that the potential value unlocked by ICT in the sewage treatment sector is up to $22.8B in 

2017 and will grow by 7.2 % annually from 2017-2021 (Bozalongo, 2017). Tech giants are slowly getting 

into the water sector by adding data management and big data analytics on top of existing water and 

wastewater treatment businesses. The Bluemix (from IBM), the Predix (from General electric) and 

Genesis64 (from Iconics) platforms, amongst others, have already been applied to the water sector 

(Krause et al., 2018). These platforms provide capabilities in remote asset monitoring, energy analytics, 

and water security. The integration of all types of data will facilitate critical decision making relative to 

assets and facilities at the right time and place in order to optimize security and reliability. Large water 

companies such as Stantec (MWH), Suez-Degremont are investing in digitalization and are generating the 

demand for it.  

 FIWARE APPLICABILITY 

Currently, FIWARE is able to manage multiples transport mechanism between the devices and the IoT 

Agent of FIWARE based on Request/Reply or Publish/Subscribe paradigm. Request/Reply paradigm uses 

HTTP to connect each device directly to the IoT Agent. Instead, Publish/Subscribe paradigm is event-

driven and requires an additional central communication point (broker) which is in charge of dispatching 

all messages between the senders and the rightful receivers. The dispatching is based on the topic 

subscription and publication, enabling highly scalable solutions without dependencies between the data 

producers and the data consumers. Therefore, it is recommended to use publish/subscription paradigm 

to load data on FIWARE platform throughout the SCOREwater project. Currently, the most relevant 

publish/subscribe standards previously identified are:  MQTT, AMQP, DDS and JMS. It is important to note 

that MQTT has a relevant position in the market due to German industry is recommending it as telemetry 

standard. Although the Request/Reply transport mechanisms are not as efficient, they should not be 

discarded. The integration of legacy systems and/or multi-parametric devices can condition this 

recommendation due to limited communication capabilities of them.  As an example, Digital Delta 

communication protocol is widely used in Netherlands and therefore is part of the legacy ICT tools, some 

multi-parametric devices are closed and only offer HTTP-based communication. 

Concerning to the standardized communication server to server, FIWARE provides natively NGSI & NGSI-

LD standards. Therefore, it is strongly recommended to use one of them as communication protocol 

between applications, NGSI-LD preferably due to better support to linked data, that is, entity 

relationships, property graphs and semantics. Despite following a request-reply paradigm, NGSI and NGSI-

LD also includes Publish-Subscribe paradigm providing the best of both approaches, dynamic discovery 

usually related to Request-Reply paradigm and low coupling related to Publish-Subscribe paradigm. In 

the same way as for communication between devices and FIWARE platform, the rest of the standards 

should not be discarded until a detailed analysis of the possible interactions with third-party applications. 

For example, if hydrological models or similar are integrated in the Dutch Case, probably the Digital 

Delta standard will be required. 

https://www.continuum.net/blog/the-basics-of-cyber-security-training-for-end-users
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Finally, although FIWARE data models include water data information such as WaterQualityObserved, it 

is very limited. Listing 1 shows a summary of the schema, which does not include information about the 

data quality, the origin of the data (measured, interpolated, simulated...). Concepts addressed by other 

data models such as WaterML2, HY_FEATURES and the future SAREF4WATR. WaterML2 is based on schema 

and hence, it lacks semantic capabilities. Although HY_FEATURES ontology is applied in numerous water 

projects to flood risk management, data management and smart city services, its formalization hinders 

the integration in FIWARE platform. FIWARE NGSI and NGSI-LD interfaces support JSON and JSON-LD 

specifications respectively, instead HY_FEATURES is formalized in OWL language. Concerning 

SAREF4WATR, which is also developed by ETSI as FIWARE platform, will be formalized with JSON-LD and 

hence, it will be totally and natively supported by FIWARE.  
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Listing 1. JSON schema for WaterQualityObserved of FIWARE Data models 

{ 
  "$schema": "http://json-schema.org/schema#", 
  "$id": "https://fiware.github.io/dataModels/specs/Environment/WaterQualityObserved/schema.json", 
  "title": "GSMA / FIWARE - Water quality observed schema", 
  "description": "Water Quality data model is intended to represent water quality parameters at a certain 
water mass (river,  lake, sea, etc.) section", 
  "type": "object", 
  "allOf": [ 
    { 
      "$ref": "https://fiware.github.io/dataModels/common-schema.json#/definitions/GSMA-Commons" 
    }, 
    { 
      "$ref": "https://fiware.github.io/dataModels/common-schema.json#/definitions/Location-Commons" 
    }, 
    { 
      "properties": { 
        "type": { 
          "type": "string", 
          "enum": ["WaterQualityObserved"], 
          "description": "NGSI Entity type" 
        }, 
        "dateObserved": { 
          "type": "string" 
        }, 
        "measurand": { 
          "type": "array", 
          "items": { 
            "type": "string" 
          }, 
          "minItems": 1 
        }, 
        "temperature": { 
          "type": "number" 
        }, 
... 
        "NO3": { 
          "type": "number", 
          "minimum": 0 
        }, 
        "refPointOfInterest": { 
          "$ref": "https://fiware.github.io/dataModels/common-schema.json#/definitions/EntityIdentifierType" 
        } 
      } 
    } 
  ], 
  "required": ["id", "type", "dateObserved", "location"] 
} 

 

http://json-schema.org/schema
https://fiware.github.io/dataModels/specs/Environment/WaterQualityObserved/schema.json
https://fiware.github.io/dataModels/common-schema.json#/definitions/GSMA-Commons
https://fiware.github.io/dataModels/common-schema.json#/definitions/Location-Commons
https://fiware.github.io/dataModels/common-schema.json#/definitions/EntityIdentifierType
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SAREF4WATR is an ontology under development by ETSI to meet the water cross-domain information 

exchange needs resulting from various water infrastructures (for example, smart meters, early warning 

systems...).  The starting point of the SAREF4WATR is the Rioter ontology4, an ontology built by Eurecat 

that extends SAREF ontology towards water domain. Rioter ontology links physical and digital water 

world, the measurements with their corresponding data quality and extends the measurements towards 

considering different variable indexes and scales. It is important to note that European Commission is 

supporting and encouraging the SAREF4WATR usage through ICT4WATER cluster. The cooperation of the 

different projects involved in the ICT4WATER cluster will allow to develop a water vocabulary/ontology 

fully aligned with the European and International Standards and stakeholders needs. Therefore, 

SAREF4WATR is a firm candidate to be integrated on FIWARE platform throughout the SCOREwater 

project and other projects involved in the same call as discussed during the last ICT4Water Cluster 

meeting. However, despite all the benefits offered by a cross-project collaboration, the SAREF4WATR 

ontology is out of the control of the SCOREwater, and because of that its integration will be evaluated 

continuously throughout the project. 

Concerning the third party integration, currently the major part of water software does not support any 

standard, they only use proprietary data models and APIS. For example, MIKE software suite for 

stormwater and urban drainage modelling uses DFS API and data models and PFS API and data models. 

Both are totally proprietary and hence, non-standard. To ensure the interoperability of the SCOREwater 

platform, the interfaces and data models will be standard, and if necessary, specific connectors to 

support communication standard-proprietary or proprietary-standard must be implemented. 

With regard to platforms and their development it is important to look at more generic features too. The 

development of Open Urban Platforms (OUP) is stimulated by the publication of a DIN-standard (DIN is 

the German standardization body). This standard builds upon the work done by EIP-SSC and is aimed to 

promote interoperability, openness and standardization. FIWARE is adopting these principles and being 

used in several water management projects, like SCOREwater and FIWARE4Water. As mentioned before, 

FIWARE offers buildings blocks that support the development of cross-sectoral open solutions and has 

been successfully applied to a wide range of use cases. 

 REMAINING CHALLENGES FOR THE WATER SECTOR 

The widespread implementation of ICT-driven UWM is hindered by generic challenges related to generic 

data and technology, which includes data processing (turning data into information and into knowledge), 

data availability (making useful information available to stakeholders), data quality, data costs 

(achieving low operation and maintenance costs for sensors and measurements), and the lack of general 

standards and protocols or data management. IWA has recently launched the digital water programme 

to facilitate the journey of the water industry towards digital uptake and integration into water services. 

The IWA Specialist group on instrumentation, control and automation (ICA), has been coordinating 

international initiatives (including forums for discussions, collecting and exchanging of methodologies, 

and practical experience). They have embraced significant progress in developing low-cost water-related 

sensors, models, and control algorithms with a very effective combination of process knowledge and ICA 

tools. Now, the tech giants come into position, with vast experience in AI tools, but rather limited process 

knowledge. Either the tech giants bring the water processes knowledge in, or water academics adapt to 

this reality by embracing new deep learning tools. The differing interests from the water research 

community and the tech giants might be a limitation to pursue the effective integration of AI tools in the 

sector. One potential solution would be the training of a new generation of researchers/practitioners 

trained both in engineering, statistics, and computer science through the creation of multidisciplinary 

training programmes. 

 
4 https://rioter-project.github.io/rioter-core-ontology/ 

https://ec.europa.eu/digital-single-market/en/news/din-releases-free-download-urban-platform-standard-promote-smart-cities
https://www.kwrwater.nl/actueel/start-fiware4water-digitale-oplossingen-voor-water/
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 SOCIAL AND ORGANIZATIONAL ENABLERS FOR THE 

DEVELOPMENT AND USE OF SMART WATER MANAGEMENT 

One of the risks of widespread implementation of big data platforms (more than lack of technological 

capabilities) is the reluctance of utility managers to delegate the control of water treatment 

infrastructure to machines, and such reluctance is slowing down the penetration of tech giants into the 

water sector. Too often, technical development is made with inadequate interaction with stakeholders, 

not fully attending to their needs and requirements. As a consequence, regulatory/legal, economic and 

social barriers to develop useful tools and to the adoption and widespread use of these developments 

are not adequately addressed. Moreover, data-driven UWM requires a change in organizational practices. 

Professionals working in UWM are generally not used to dealing with an abundance of data and dynamic 

systems. In order for various stakeholders to participate and effectively contribute to the development 

of digital technologies and to use and profit from the improvements in water management that these 

technologies offer, as well as to identify best practices and guidelines for further exploitation, there is 

a need to identify salient social and organizational enablers. The successful adoption of new technical 

services by stakeholders requires a proven business case; it must be clear that the new tools provide 

opportunities to quantify improvements in resilience and track changes over time. Moreover, having an 

iterative development process where developers and stakeholders meet recurrently over time is crucial 

to create useful tools that can be adapted to the needs of different users. The Smart Resilience project 

also shows that for high efficiency, new tools need to complement and be integrated with existing tools, 

aiming towards reaching goals or enabling new ways to reach them. However, neither Smart Resilience 

nor other projects reviewed has validated the models and data developed through actual use or 

developed process variables for increasing resilience. 

5. CONCLUSIONS 

This report provides evidences on the application of Big Data and AI in the management of urban drainage 

and sewerage systems. The water sector represents some of the most interesting and yet challenging use 

cases that are out there for Big data, due to its multidisciplinary character. It involves different data 

sources (e.g. multi-sensor data collected from ground-based monitoring networks and IoT, large-scale 

datasets collected from field experiments via multiple instruments, data simulated by system models, 

etc.). For IoT the communication is challenging as some of the sensors are installed underground and the 

field needs to use the most advanced protocols (e.g. LoRa). We identified 10 types of communication 

protocols available, and 12 data models (e.g. WaterML) for data standardization. In terms of Big data 

analytics, we provide a review of data driven models already applied (artificial neural networks, auto-

regression, support vector machine, Hybrid ML, Regression trees, Logic regression, Bayesian networks, 

Principal component analysis, Fuzzy logic, clustering) to solve different problems. Even though, several 

data-driven models exist there are only a few Big Data platforms deployed in the water sector. The 

widespread implementation is limited by the availability of high-quality data and fit for purpose data-

driven algorithms. The digitalization of the water sector is getting into the agenda of the International 

Water Association and funding is allocated through the H2020 programme. 
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(Zyrianoff, 2018), “Scalability of an Internet of Things Platform for Smart Water Management for 

Agriculture”, Proceeding of the 23rd Conference of Open Innovations Association FRUCT, 58, 432-439 
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ANNEX 1. COMPENDIUM OF LONG TABLES 
Annex Table 1. Detailed explanation of sensor types 

Type of sensors Field of application Description Reference 

Thermistor, 
Thermocouples, 
Thermometers 

Anaerobic 
digesters, 
Sludge management 

Temperature is a well-known parameter. It is an important factor in different wastewater 
treatment processes and it must be controlled especially in anaerobic processes, and sludge 
reactors. 
A Thermistor is a powered metal oxide whose measures the temperature related to the resistance. 
There are two different Thermistor, NTC (resistance decreases as temperature rises) and PTC 
(resistance increases as temperature rises). 
A thermocouple is an electrical device consisting of producing temperature-dependent voltage as 
a result of the thermoelectric effect. The voltage is interpreted to measure temperature. 
A thermometer measures temperature gradient using a mercury-in-glass bulb, with a numeric scale 
that shows the numeric gradient. Its functioning is about thermal expansion of the metal, so when 
the temperature rises, the metal expands. 

(Lee 2019) 
(Das 2017) 
(Vanrolleghem 
2003) 
(Harremoës 1993) 

Pressure sensors 
Pressure transmitter 
Pressure transducer 

Aeration processes 
Anaerobic digesters 
Alarm functions 

A pressure sensor is used to control the pressure measurements of liquids and gases. 
They can be called pressure transducers or transmitters, which are widely used to control several 
wastewater treatment processes the pressure. 
A pressure transmitter is a probe that converts pressure into an analog electrical signal. The most 
used pressure transmitter is strain-gauge based transducer. 
The strain gauge is deformed into the diaphragm of the probe.  
The quantification of pressure is related to the physical deformation of this gauge. The electrical 
resistance produced by the strain gauge is proportional to the pressure. 

(Hauser 2019) 
(Vanrolleghem 
2003) 
(Harremoës 1993) 
 

Liquid Level sensors Monitor water level, 
Alarm functions, 
Sewer level control, 
Storm water 
control, 
Debris control 

The measurement of liquid level is an important concern of wastewater management and control. 
The liquid level can change rapidly, and for that, specific sensors should be used: i) Capacitive 
probes, ii) Pressure sensors, iii) Ultrasonic probes, iv) Microwave sensors. 
As a summary, liquid level sensors work in two different ways: 
Point level measurement sensors are used to mark a single discrete liquid height. This kind of 
sensors functions as alarm, showing overfill or low level conditions  
Continuous level transmitters can measure a fluid level range, providing a liquid level control of 
an entire system. 

(Hauser 2019) 
(Toran 
2016)(Campisano 
2013)(Vanrolleghem 
2003)(Campisano 
2009)(Harremoës 
1993) 
 

Gas flow rotameters, 
Thermal mass flow 
meters; 
Electromagnetic flow 
meter 

Wastewater 
treatment, 
Alarm functions 
 

A flow meter (or flow sensor) is an instrument used to measure linear, nonlinear, mass or 
volumetric flow rate of a liquid or a gas. 

(Hauser 2019) 
(Vanrolleghem 
2003) 
(Harremoës 1993) 
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Type of sensors Field of application Description Reference 

pH electrodes Wastewater quality 
control 
Alarm functions 
 

pH is the negative logarithm of ion hydrogen concentration. 
pH sensor has a measuring electrode and a reference electrode. The differential voltage of both 
submerged electrodes gives the pH value of a solution. The temperature is critical because of the 
differential voltage could change. 
pH electrodes can be necessary to detect abrupt changes in the sewage network. The control of 
these probes can spare treatment plants of cost overruns. 

(Hauser 2019) 
(Jha 2018) 
(Das 2017) 
(Vanrolleghem 
2003) 

Conductivity Wastewater quality 
control 
Alarm functions 
 

There are three different conductivity sensors. 
Two electrodes sensor, or absolute measuring probe: An Alternating Current (AC) is applied and 
it generates an electric current. Its intensity will depend on the number of free anions and cations 
contained in the liquid. The more anions and free cations the liquid contains, the greater electrical 
conductivity will be. 
Four electrodes sensor or differential measuring probes: An ion high concentration liquid causes 
a current reduction, the so-called Polarization effect. This effect can influence the measurement 
accuracy of the conductive probes. This kind of probe has 4 electrodes, 2 without current, so 
without affectation by the Polarization effect. These two electrodes measure the electric potential 
difference in the liquid. 
Inductive/toroid sensor: Toroid probes contain a transmission and a reception coil, and measure 
the conductivity in several steps: 

1. An oscillator generates a magnetic field in the transmission coil, which induces a voltage in the 
liquid. 

2. The cations and anions of the liquid start to move generating an alternating current. 
3. In this way, an alternating magnetic field and, consequently, a current flow in the receiving coil is 

induced. 
The current intensity and conductivity are directly proportional to the number of free ions in the 
liquid. 

(Hauser 2019) 
(Jha 2018) 
(Das 2017) 
(Lim 2017) 
(Vanrolleghem 
2003) 

Gaseous products(H2, 
CH4, CO2, H2S) 
 

Sewer 
WWTPs 

H2 and H2S are critical components related to corrosion in wastewater major infrastructure assets. 
Hydrogen and wet hydrogen sulfide gas are the precursors of aggressive acidic ambient that 
destroys conventional electronic sensors. 
Specific hydrogen analyzers have been changing to become more robust and reliable. 3D printed 
epoxy resin packaging and Polyether ether ketone packaging probes, previously calibrated with 
zero-maintenance, are being the most evaluated. 

(Alwis 2016) 
(Jiang 2014) 
(Vanrolleghem 
2003) 
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Type of sensors Field of application Description Reference 

Alkalinity sensors 
Titrimetry principle 
Titrimetric sensor 
Pressure sensors 
Gas flow meters 

Anaerobic Digestion 
control 
Total Alkalinity (TA) 
Partial Alkalinity 
(PA) 
pH 
Ammonia 
Bicarbonate 
Dissolved Carbon 
Dioxide (DCD) 

A bacterium in anaerobic digesters requires a range of pH from 6.5 to 8. Stabilization of the pH-
value, maintaining it within this range is obtained by the release of large amounts of bicarbonate 
(a buffering compound). The control of alkalinity is especially controlled in order to obtain a good 
response from anaerobic digesters. 
Titrimetric sensors are widely used to control the pH of the liquor and to know the concentration 
of bicarbonate. This technique is conducted titrating the sample down and leads the pH value to 
3.5. 
Other on-line probes have the same principle but using also, a mathematical model interpretation 
with a titration process that uses a whole pH-range (3-11) control. 
Gaseous carbon dioxide quantifiers as widely used to detect and control the acidification of 
samples. This measure can be performed by two ways: the first one is measuring the overpressure 
in constant volume vessel. The second one uses a gas flow meter to measure the produced volume 
of gas. 

(Campisano 2013) 
(Vanrolleghem 
2003) 
(Harremoës 1993) 

UV-Vis Absorbance 
Infrared Spectroscopy 
(IR) 
Optical sensors 
  
Ultrasound sensors 

Influent/Effluent 
Quality 
Contaminant 
control 
Total Organic 
Carbon (TOC) 
Chemical Oxygen 
Demand (COD) 
Total Suspended 
Solids (TSS) 

UV-VIS absorbance measurement  is an important organic matter checkpoint. Beside of this, it is 
significant to monitor and control the removal of micropollutants.  
Different wavelengths are indicators of high toxicity components as hydrocarbons, pesticides or 
analgesics. 
Other important uses of UV-Vis absorbance is the characterization capacity of different organic 
matter. 
Spectrophotometer works relying on the fact that electromagnetic radiation (EMR) interacts with 
atoms of a liquid in discrete ways to produce characteristic absorption of emission paths. Some 
parameters as HS-,TOC, COD and TSS can be determined using the measures extracted from a 
spectrophotometer combined by mathematical models (MLR, PLSR, PCR, etc.). 
Infrared probes are less common than UV-Vis but they are gathering the interest in different WWT 
processes, polyhydroxyacanoates (PHA) quantification, among others. 
The IR spectrum can be obtained using absorbance, transmittance, and reflectance methods. 

(Yang 2018) 
(Thomas 2017) 
(Mesquita 2017) 
(Altman 2016) 
(Taylor 2014) 
(Campisano 2013) 
(Vanrolleghem 
2003) 
(Harremoës 1993) 
(Van der 
Broeke 2006) 
(Lourenco 2008) 
(Torres  2008) 
Gruber 2006) 
(Rieger2006)  
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Type of sensors Field of application Description Reference 

Fluorescence sensors 
Ultrasonic sensors 
Biomass sensors 
Electrochemical sensors 
Three-chamber 
microbial desalination 
cell (MDC) 
Two-chamber microbial 
electrolysis cell (MEC) 

Anaerobic digestion 
Aerobic systems 
VFA (Volatile Fatty 
Acids) 
Biogas flow 

EEM has widely used to characterize several types of dissolved organic matter in water. 
This procedure can provide a great and accurate schema of essential intermediates in biological 
reactions at particular wavelengths. 
Fluorescence sensors have two optical fibers, the first one is to excite the culture using a light 
beam and the second one is to carry out the information of light collected into the detector. 
Depending on the element that light pass through, one or another wavelength will be monitored. 
This is a really good routine because these probes can control the state of the culture and 
determine the biomass concentration. 
Due to the submersion of the probes several problems can occur: bubbles can give signal error, 
fouling related to blocking particles can give erroneous measures.  
Ultrasonic sensors are used to quantify concentrations. These kinds of sensors measure the 
ultrasonic velocity sound between a blank sample and a wastewater sample. The principal 
drawbacks are the temperature changes and bubbles. 
Biological cells are widely used to determine the viable biomass applying an electrical field.  
This electrical field creates a polarization throughout the cell membrane that can by measured 
using capacitance of the suspension. 
Beside of that, other microbial electrochemical sensors have been developing using similar 
principles. Three-chamber microbial desalination cell (MDC), two-chamber microbial electrolysis 
cell (MEC) have been developed in order to monitor and control VFAs concentration. 

(Jiang 2019) 
(Yang 2018) 
(Carstea 2016) 
(Korak 2014) 
(Nebbioso 2012) 
(McNight 2001) 
(Coble 1995) 
(Harremoës 1993) 

Fourier Transform Infra-
Red (FT-IR) 
spectrometer 
Titrimetry 
 

VFA (Volatile Fatty 
Acids) 
Total Organic 
Carbon (TOC) 
Chemical Oxygen 
Demand (COD) 
Anaerobic digestion 
Suspended Solids 
 

Volatile Fatty Acids are an important intermediate part of anaerobic digesters.  
Several full-scale applications have been developed in order to control and maintain this process 
in perfect conditions.  
Fourier Transform Infra–Red spectrometer (FT-IR) is a probe that can measures lot of parameters 
(COD, TOC, VFA, PA and TA) uses a reference of each compound. By comparing a sample of each 
compound reference, the composition can be quantified using the Beer-Lambert Law. This 
methodology has a heavy calibration effort, which is a handicap to use it. 
Some new and robust sensors have been developed using a two-step titration with a minimum 
volatilization. The ratio is obtained using this probes gives a clear idea about the relative amount 
of buffer is needed to neutralize VFAs and to control the digesters. 
 

(Jiang 2019) 
(Wu 2019) 
(Vanrolleghem 
2003) 
(Pind 2002) 
(Rozzi 1991) 
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Type of sensors Field of application Description Reference 

Electrochemical sensors 
(Galvanic and 
Polarographic probes), 
and Optical probes 

Activated Sludge 
kinetics 
Wastewater 
characterization  
Aeration processes 
Control oxygen 
rates 
Dissolved Oxygen 
(DO) 
Biological Oxygen 
Demand (BOD) 

The supervision of solved oxygen process is really important and widely controlled. Different probes 
are used in several applications: in the industrial water treatment DO is managed in order to control 
the possible corrosion of equipment installed. In aquaculture, it is especially important so as to 
control the marine life. In wastewater management DO is extensively used because it is an indicator 
about how good the sludge kinetics performance is. 
There are three important probes to measure DO: 
Galvanic and Polarographic probes: they have an electrochemical measuring cell. DO diffuses 
from the liquid matrix across the gas-permeable membrane into the cell sensor. 
Once inside the sensor, the oxygen suffers a chemical reduction reaction and produces an electrical 
signal.  
Galvanic probe is self-polarizing due to the material properties of the anode (zinc or lead) and 
cathode (silver). 
Polarographic DO sensor requires a constant voltage to be applied to it to be polarized.  
Optical probes: This kind of sensor measures the DO throughout luminescent red and blue dyes in 
the probe cap. Oxygen interferes with the luminescent dyes in an effect called quenching. 

(Jiang 
2019)(Cornelissen 
2018)(Campisano 
2013)(Nebbioso 
2012)(Hanson 
2007)(Vanrolleghem 
2003)(Harremoës 
1993) 
 

Standard methods 
Respirometric probes 
Microbial biosensors 
Electrochemical sensors 
Fluorescence  
UVspectrophotometry 

Biological Oxygen 
Demand (BOD) 

Standard off-line method to measure BOD has been widely used. The BOD5 is a measure of 
consumed oxygen in 5 days (or more). A direct measurement of oxygen can be performed using a 
potentiometric or bioluminescent electrodes). 
Continuous measurements of BOD can be made using respirometric methods. The oxygen mass 
balance is calculated in a respiration chamber once the wastewater has been added. 
Microbial biosensors give a rapid efficient analysis. A biosensor is an integrated apparatus that 
gives quantitative analytical information using a transducer. 
Another good continuous measurement is using an electrochemical sensor (explained above). 
Fluorescence and UV-spectrophotometry are great on-line monitoring methods. Using several 
widely examined wavelengths (λ220, λ254, and λ260) with different weights and relations, a great 
approach of BOD, COD and TOC can be achieved. The major drawback of these kinds of sensors is 
fouling, resulting in a loss of sensitivity, needing recalibration and, in some occasions, an automatic 
cleaning device. 

(Carstea 2016) 
(Nebbioso 2012) 
(Ponomareva 2011) 
(Vanrolleghem 
2003) 
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Annex Table 2. List of relevant communication protocols 

Communication Protocol Water field of application Description Reference 

MQTT5 Telemetry data 
Assets control 

MQTT is a message-centric wire protocol designed for M2M communications that 
enables the transfer of telemetry-style data in the form of messages from devices, 
along high latency or constrained networks, to a server or small message broker. 
Devices may range from sensors and actuators, to mobile phones, embedded systems 
on vehicles, or laptops and full scale computers. It supports publish-and-subscribe style 
communications and is extremely simple. 

(Rubión, 2019) 
(Parygin, 2017) 
(Vinoj, 2018) 
(Srihari, 2018) 

AMQP6 Telemetry data 
Server to Server 
communication 
 

AMQP is a message-centric protocol for sending interoperable messages between two 
or more clients. AMQP depicts the behaviour of the messaging provider and client 
ensuring that implementations from different vendors are truly interoperable. AMQP 
is a binary, application layer protocol, designed to efficiently support a wide variety 
of messaging applications and communication patterns. It provides flow controlled, 
message-oriented communication with message-delivery guarantees, and 
authentication and/or encryption based on SASL and/or TLS It assumes an underlying 
reliable transport layer protocol such as Transmission Control Protocol (TCP). 

(Adelman, 2017) 
(Alvisi, 2019) 
 

DDS7 Telemetry data 
Assets control 

The DDS standard, Data Distribution Service, is a data-centric publish-and-subscribe 
technology to address the data distribution requirements of mission-critical systems. 
It enables scalable, real-time, reliable, high performance and interoperable data 
exchanges between publishers and subscribers. Moreover, it is both language and OS 
independent. DDS is used on business-critical applications like financial trading, air 
traffic control, smart grid management, and other big data applications. Also, it is 
used in a wide range of Industrial Internet applications. DCPS provides a set of APIs 
that present a set of standardised “profiles” targeting real-time information-
availability for any domain. Moreover, the protocol also supports automatic 
“Discovery”. These APIs have been implemented in a range of different programming 
languages (Ada, C, C++, C#, Java, JavaScript, CofeeScript, Scala, Lua, and Ruby) and 
helps to ensure that DDS applications can be ported easily between different vendor’s 
implementations.  

(Tsertou, 2015)  

 
5 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt 
6 https://www.oasis-open.org/committees/amqp/ 
7 https://www.omg.org/omg-dds-portal/ 

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
https://www.oasis-open.org/committees/amqp/
https://www.omg.org/omg-dds-portal/
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Communication Protocol Water field of application Description Reference 

JMS8 Server to Server 
communication 

JMS (Oracle, 2013) is a message-centric protocol for sending messages between two or 
more clients. It is one of the most widely used publish-and-subscribe messaging 
technologies, but it also allows point-to-point messaging. Its specification, JSR 914, 
was developed under the Java Community Process and it is part of the Java Platform 
Enterprise Edition (Java EE). Mainly, JMS offers capabilities to create, send, receive 
and read messages to application components based on Java EE encouraging the 
coupling loss, the reliability and the synchrony. It is important to note that JMS is only 
a Java API and does not define a wire protocol, hence JMS implementations from 
different vendors will not interoperate. 

(Fleischer, 2010)  

RESTful Server to Server 
communication 
Assets control 

REST has emerged as the predominant Web API design model. RESTful style 
architectures conventionally consist of clients and servers. Clients initiate requests to 
servers; servers process requests and return appropriate responses. Requests and 
responses are built around the transfer of representations of resources. A resource can 
be essentially any coherent and meaningful concept that may be addressed. A 
representation of a resource is typically a document that captures the current or 
intended state of a resource. REST was initially described in the context of HTTP, but 
it is not limited to that protocol. RESTful architectures may be based on other 
Application Layer protocols if they already provide a rich and uniform vocabulary for 
applications based on the transfer of meaningful representational state. 

(Sheng, 2015) 
 

CoAP9 Telemetry Data 
Assets control 

CoAP is a document transfer protocol. Mainly, it was designed to communicate over 
the Internet for very simple electronic devices. CoAP is being standardised by the 
Internet Engineering Task Force (IETF) Constrained Restful Environments (CoRE) 
Working Group. CoAP is focused on providing communication capabilities to small low 
power sensors, switches, valves and resource constrained internet devices such as 
Wireless Sensor Networks (WSNs). Moreover, it is designed to easily translate to HTPP 
for simplified RESTful web integration. CoAP is lightweight, simple and runs over UDP 
(not TCP) with support for multicast addressing. CoAP is based on RESTful architecture 
and hence, it supports a client/server programming model where the resources are 
server-controlled abstractions made available by an application process and identified 
by Universal Resource Identifiers (URIs).  It is important to note that CoAP supports 
resource discovery. 

(Anjana, 2015),  
(Lee, 2018) 
 
 

OGC SOS10 Server to Server 
Communication 
 

OGC SOS provides a standardised interface to manage sensors in an interoperable way. The 
standard defines a Web Service interface, based on SOAP, which allows querying 
observations, sensor metadata, as well as representations of observed features. Further, 
this standard defines means to register new sensors and to remove existing ones. Also, it 
defines operations to insert new sensor observations. 

(Stasch, 2017), 
(Hussain, 2015), 
(Yang, 2018) 
 

 
8 https://www.oracle.com/technetwork/articles/java/introjms-1577110.html 
9 https://tools.ietf.org/html/rfc7252 
10 https://www.opengeospatial.org/standards/sos 

https://www.oracle.com/technetwork/articles/java/introjms-1577110.html
https://tools.ietf.org/html/rfc7252
https://www.opengeospatial.org/standards/sos
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Communication Protocol Water field of application Description Reference 

Digital Delta11 Server to Server 
Communication 

The Digital Delta is a public-private initiative for cooperation in ICT in the water sector 
that works to create a chain of services to improve water management with online 
digital tools such as flood forecasting, water-stress warning and analytic hydrology 
tools. Companies like HydroLogic or Nelen & Schuurmans, work together with other 
water authorities for its implementation. 

(Min, 2016),  
(Rooney, 2013) 
 
 

FIWARE NGSI12 Server to Server 
Communication 

FI-WARE NGSI Context Management specifications are based in the NGSI Context 
Management specifications defined by OMA (Open Mobille Alliance). They take the form of 
a RESTful binding specification of the two interfaces, namely NGSI-9 and NGSI-10, one used 
for exchanging information about the availability of the context information (discovering 
hosts, subscriptions for context availability and registration of context information) and 
another to about entities and their attributes, respectively. 

(Zyrianoff, 2018) 
 

FIWARE NGSI-LD13 Server to Server 
Communication 
 

FI-WARE NGSI-LD is the evolution of FI-WARE NGSI to better support linked data (entity 
relationships'), property graphs and semantics (exploiting the capabilities offered by JSON-
LD).  and the main difference is the addition of a new type of attribute, “Relationship” 
intended to link one Entity with to another Entity.  

(Kamienski, 2019) 
(Lopez-Morales, 2019)  

 
11 https://github.com/DigitaleDeltaOrg/dd-api-spec 
12 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI_Open_RESTful_API_Specification 
13 https://fiware-datamodels.readthedocs.io/en/latest/ngsi-ld_faq/index.html 

https://github.com/DigitaleDeltaOrg/dd-api-spec
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI_Open_RESTful_API_Specification
https://fiware-datamodels.readthedocs.io/en/latest/ngsi-ld_faq/index.html
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Annex Table 3. Communication protocols characteristics 
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MQTT Publish / 
Subscribe 

Brokered Partial 1000 
messages 
per 
second 
and 
broker 

Topics with 
hierarchical 
matching 

Undefined OASIS Open Source 
& Commercial 

N N Authentication based 
on 
username/password 
SSL or TSL data 
encryption 

Y14 
 
 
 

AMQP Publish / 
Subscribe 

Brokered Partial 1000 
messages 
per 
second 
and 
broker 

Exchanges, Queues 
and bindings 

AMQP type 
system or 
used defined 

OASIS Open Source 
& Commercial 

N Y SASL authentication, 
TLS for data 
encryption 

Y15 

DDS Publish / 
Subscribe 

Global 
Data 
Space 

Yes 1000 
messages 
per 
second 

Partitions, Topics 
with message 
filtering 

 

CDR OMG’s RTPS 
and DDSI 
standards 

Open Source 
& Commercial 

 

Y N Vendor specific but 
typically based on SSL 
or TLS with 
proprietary access 
control 

Y16 

 
14 https://github.com/Fiware/tutorials.IoT-over-MQTT 
15 https://fiware-iotagent-ul.readthedocs.io/en/latest/installationguide/index.html 
16 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Middleware_Open_API_Specification 

https://fiware-iotagent-ul.readthedocs.io/en/latest/installationguide/index.html
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Middleware_Open_API_Specification
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JMS Publish / 
Subscribe 

Brokered No 1000 
messages 
per 
second 
and 
broker 

Topics and Queues 
with message 
filtering 

Undefined JCP JMS 
standard 

Open Source 
& Commercial  

N Y Vendor specific but 
typically based on SSL 
or TLS. Commonly 
used with JAAS API. 

Y17 

RESTful Request / 
Reply 

Client / 
Server 

Yes 100 
messages 
per 
second 

N/A N Is an 
architectural 
style rather 
than a 
standard 

HTTP 
available for 
free on most 
platforms 

N N Typically based on SSL 
or TLS. 

Y 

CoAP Request / 
Reply 

Client / 
Server 

Yes 
100 
messages 
per 
second 

 

Provides support for 
Multicast addressing 

Configurable IETF CoAP 
standard 

Open Source 
& 
Commercially 

Y N DTLS Y18 

Digital 
Delta 

Request / 
Reply 

Client / 
Server 

Yes 100 
messages 
per 
second 

- Y HydroLogic, 
Nelen & 
Schuurmans, 
Deltares 

Open Source 

 
Y N Not provided natively N 

 
17 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.ServiceManager.QueryManager 
18 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.DeviceManagement_R5#IoT_Agent:_LWM2M.2FCoAP 

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.Feature.Cloud.ServiceManager.QueryManager
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE.OpenSpecification.IoT.Backend.DeviceManagement_R5#IoT_Agent:_LWM2M.2FCoAP
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OGC 
SOS 

Request / 
Reply 

Client / 
Server 

Yes 
100 
messages 
per 
second 

 

Not provided 
natively. Provided 
through OGC 
Publish/Subscribe 

Y OGC Open Source 
& Commercial 

Y Y Not included in the 
standard. Provided by 
specific vendors 

Y19 

Fiware 
NGSI & 
NGSI-LD 

Request / 
Reply 

Client / 
Server 

Yes 
100 
messages 
per 
second 

 

Based on entity 
creation or update 
and enhanced with 
notification rules 
(filtering attributes, 
multiple 
parameters...) 

Only XML as 
data 
serialization 

OMA Open Source Y Y Do not provide native 
authentication nor 
any authorization 
mechanisms. It is 
provided by FIWARE 
GEs 

Y 

 

  

 
19 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/IDAS 

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/IDAS
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Annex Table 4. List of relevant water data models 

Data model Water field of application Description Reference 

WaterML220 Water Supply and Distribution 
Data Management and Smart City 
Services 
River Basin Management 
Water Reuse and Recycling 
Water Scarcity and Droughts 
Flood Risk Management 

Common exchange format for hydrological 
time-series) including information regarding 
quality, validity/interpolation and remarks. 
Developed within the OGC Hydrology Domain 
Working group. Existing standards like GML 
and Observations & Measurements has been 
used to build it. Fully supported to OGC 
communication protocols such as OGC SOS and 
OGC WPS. 

(Hussain, 2015) 
(Sadler, 2016) 
(Lorraine, 2015) 

HY_Features21 Water Supply and Distribution  
Data Management and Smart City 
Services 
Sustainable Development, Circular 
Economy, & Ecosystem Services 
Water-Energy Nexus 
River Basin Management 
Water Reuse and Recycling 
Management of the Water Cycle in 
Industry 
Flood Risk Management 

OGC implementation Standard to define a 
common conceptual feature model for use in 
identification of typical features of the 
hydrology domain. The model describes types 
of surface hydrologic features by defining 
fundamental relationships among various 
components of the hydrosphere. Moreover, it 
also links hydrologic observations to their 
feature of interest, enables systems to 
ambiguously link data between systems and 
domains, allows aggregation of cross-
referenced features into integrated data sets 
and data products, enable cross-domain or 
multidiscipline services to communicate. 

(Dornblut, 2013) 
(Looser, 2014) 
(Anzaldi, 2014) 
 

Digital Delta Data models22 Flood Risk Management 
Water Scarcity and Droughts 
 

The Digital Delta is a public- private initiative 
for cooperation in ICT in the water sector that 
works to create hydrological observations data 
models for flood forecasting, water-stress 
warning and analytic hydrology tools. 
Companies like HydroLogic or Nelen & 
Schuurmans, work together with other water 
authorities for its implementation. 

(Rooney, 2013)  
 

 

20 http://www.opengeospatial.org/standards/waterml 

21 http://www.opengeospatial.org/projects/groups/hydrofeatswg 

22 https://github.com/DigitaleDeltaOrg/dd-api 

http://www.opengeospatial.org/standards/waterml
http://www.opengeospatial.org/projects/groups/hydrofeatswg
https://github.com/DigitaleDeltaOrg/dd-api
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Data model Water field of application Description Reference 

HydroNET4 Flood Risk Management 1D: Timeseries, modeltimeseries, ensemble 
timeseries for hydro & meteorological 
observations and model predictions 2/3D: 
Grids, modelgrids ensemblegrids for hyddro & 
meteorological observations and model 
predictions 
 

 

RiverML23 River Basin Management 
 
 
 

RiverML, currently under development, is a 
one-dimensional standard built on WaterML 
2.0 (OGC) that by providing a common transfer 
data model language for conveying a 
description of river channel and floodplain 
geometry and flow characteristics.  

(Jackson, 2014) 
 

SWEET24 (Semantic Web for Earth and 
Environmental Terminology) 

Wastewater and Storm Water 
Collection (including Flood Risk 
Management) 
River Basin Management  
Water Scarcity and Droughts 
Sea Water  
Sustainable Development, Circular 
Economy, & Ecosystems Services 

SWEET is a suite of ontologies of 
environmental domain that can be used for 
water management. 
 SWEET consists of nine top-level 
concepts/ontologies (Representation, Process 
(microscale), Phenomena (macroscale), 
Matter, Realm, Human Activities, Property 
(observation), State (adjective, adverb), and 
Relation (verb)). 
 

 

GWML225 Groundwater Management OGC standard to exchange groundwater 
related information including conceptual and 
logical. It is supported by Web Feature Service 
(WFS) and Sensor Observation Service (SOS). 
GWML2 captures the semantics, schema and 
encoding syntax of key groundwater data, to 
enable information systems to interoperate 
with such data. 

(Brodaric, 2018) 
(Simons, 2015) 
(Beaufils, 2019) 

 
23 http://tools.crwr.utexas.edu/RiverML/index.html 

24 https://esipfed.github.io/stc/sweet_lode/reprDataModel.html 

25 https://www.opengeospatial.org/standards/gwml2 

http://tools.crwr.utexas.edu/RiverML/index.html
https://esipfed.github.io/stc/sweet_lode/reprDataModel.html
https://www.opengeospatial.org/standards/gwml2
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Data model Water field of application Description Reference 

O&M26 Water Supply and Distribution 
Data Management and Smart City 
Services 
River Basin Management 
Water Reuse and Recycling 
Water Scarcity and Droughts 
Flood Management 

The O&M Standard defines XML schemas for 
observations, and for features involved in 
sampling when making observations. These 
provide document models for the exchange of 
information describing observation acts and 
their results, both within and between 
different scientific and technical 
communities.  

 

HydroML27 Water Supply and Distribution  
River Basin Management 
Water Reuse and Recycling 
Flood Risk Management 
Water Scarcity and Droughts 

HydroML, a product of the National Water 
Information System of the Water Resource, 
defines XML implementation to exchange  
hydrologic data between persons and 
organizations, data collection devices and 
data bases and to be served, received, and 
processed on the Web. 

(Kanwar,2010) 

INSPIRE28 Water Supply and Distribution  
River Basin Management 
Water Reuse and Recycling 
Flood Risk Management 
Water Scarcity and Droughts 

INSPIRE-Hydrography provides a data 
specification to facilitate the interoperability 
of hydrographic information between member 
states, including the description of the sea, 
lakes, river and other waters, with their 
phenomena. It concerns with the network of 
water bodies and relating structures and 
objects. Reference Systems, units of measure, 
data quality and metadata are also taking to 
account in the data models. 

(Eriksson, 2018) 
(Vacariu, 2015) 
 

FIWARE Data models Water quality monitoring 
Weather information 
Flood and Water Pollution Alert 

Data models harmonized to enable data 
portability for different applications including, 
but not limited, to Smart Cities. The data 
models are used together with FIWARE NGSI. It 
is important to note that the new data models 
can be created. 

(Kamienski, 2019) 
(Lopez-Morales, 2019) 
(Zyrianoff, 2018) 

 
26 http://www.opengeospatial.org/standards/om 

27 https://water.usgs.gov/XML/NWIS/nwis_hml.htm 

28 https://inspire.ec.europa.eu/id/document/tg/hy 

http://www.opengeospatial.org/standards/om
https://water.usgs.gov/XML/NWIS/nwis_hml.htm
https://inspire.ec.europa.eu/id/document/tg/hy
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Data model Water field of application Description Reference 

SAREF (Smart Applications REFerence 
Ontology) 

 
Water Quality Monitoring 
On development the water extension 

SAREF ontology provides the semantic 
interoperability necessary to share the 
information related to: (i) smart city including 
water quality monitoring; (ii) industry and 
manufacturing including production 
equipment, batches and material; (iii) 
automotive; (iv) eHealth/Ageing-well; (v) 
Wearables; (vi) Smart agriculture and food 
chain. 

- 
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Annex Table 5. Data driven models applied to flood, sewage, pollution and urban water management 

Data driven model Field of application Description Reference 

ANN (Artificial Neural Network) 
including BPNNM (Back Propagation 
Neural Networks), MLP (Multi Layer 
Perceptron),  BFGSNN (Broyden 
Fletcher Goldfarb Shanno Neural 
Network) among others. 

Short term flood prediction 
Long term flood prediction 
Sewer management 
Wastewater Treatment Operation 
 
 

Real-time flood prediction 
Hourly stage level, streamflow and peak flow, water 
surge level and flood prediction 
Daily rainfall-runoff and flood prediction 
Weekly stream prediction 
Monthly stream, precipitation, reservoir levels and 
discharge  prediction 
Seasonal water levels and heavy rainfall prediction 
Wastewater Treatment Process performance prediction 
Wastewater Treatment Control 
Soft Sensing  

(Ghose, 2018) 
(Zhang, 2018) 
(Gazendam, 2016) 
(Kim, 2016) 
(Shamim, 2016) 
(Kourgialas, 2015) 
(Aichouri, 2015) 
(Deo, 2015) 
(Çoruh et al. 2014) 
(Lohani, 2014) 
(Elsafi, 2014) 
(Bello, 2013) 
(Singh, 2013) 
(Danso-Amoako, 2012) 
(Rezaeian-Zadeh,  2012) 
(Rezaeian-Zadeh,  2012) 
(Yestilmezsoy, 2011) 
(Luccarinno, 2010) 
(Ju, 2009) 
(Lin, 2006) 
(Pereira, 2006) 
(Shoo, 2006) 
(Kim, 2001) 

AR (Auto-regressive) Short term flood prediction Hourly stage level & streamflow Prediction (Pereira, 2006) 

SVM (Support Vector Machines) & SVR 
(Support Vector Regression) 

Short term flood prediction 
Long term flood prediction 
Wastewater Treatment Operation 

Daily streamflow prediction 
Monthly stream prediction 
Soft Sensing  
Membrane separation design optimization 
Wastewater control purposes 

(Soleimani, 2013) 
(Yu, 2013) 
(Lin, 2012) 
(Pan, 2010) 
(Lin, 2006) 

Hybrid ML methods Short term flood prediction Real-time flash flood, flood quantile estimation and 
rainfall-runoff prediction 
Hourly water level, watershed, rainfall-runoff and flood 
area prediction 
Daily rainfall-runoff, stream flow and flash floods 
prediction 

(Doycheva, 2017) 
(French, 2017) 
(Jimeno, 2017)  
(Young, 2017) 
(Nanda, 2016) 
(Chang, 2014) 
(Rezaeianzadeh, 2014) 

RT (Regression Trees) & DT (Decision 
Trees) 

Long term flood prediction 
Sewage management 
Wastewater Treatment Operation 

Annually floodplain forests prediction 
Likelihood pipe blockage prediction 
 

(Cunningham, 2017) 
(Bailey, 2016) 
(Ma, 2009) 
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Data driven model Field of application Description Reference 

LR (Logistic Regression) Sewage management Prediction condition of sanitary sewer pipe (Mohammadi, 2019) 

BN (Bayesian Networks) Sewage management Water pipe failure detection (Lin et al., 2015) 

PCA (Principal Component Analysis) Wastewater Treatment Operation Fault detection 
Process understanding 
 

(Villez, 2016) 
(Liukkonen, 2013) 
(Dürrenmatt, 2011) 
(Zhang, 2010) 
(Yoo, 2003) 

Fuzzy Logic  Wastewater Treatment Control and prediction purposes (Marsili-Libelli, 2008)  

Clustering Wastewater Treatment Operation 
 

Increase process understanding and feature engineering (Gibert, 2010) 
(Dovzan, 2011a) 
(Dovzan, 2011b) 
(Aguado, 2008) 
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