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PROJECT ABSTRACT 

SCOREwater focuses on enhancing the resilience of cities against climate change and urbanization by 

enabling a water smart society that fulfils SDGs 3, 6, 11, 12 and 13 and secures future ecosystem services. 

We introduce digital services to improve management of wastewater, stormwater and flooding events. 

These services are provided by an adaptive digital platform, developed and verified by relevant 

stakeholders (communities, municipalities, businesses, and civil society) in iterative collaboration with 

developers, thus tailoring to stakeholders’ needs. Existing technical platforms and services (e.g. FIWARE, 

CKAN) are extended to the water domain by integrating relevant standards, ontologies and vocabularies, 

and provide an interoperable open-source platform for smart water management. Emerging digital 

technologies such as IoT, Artificial Intelligence, and Big Data is used to provide accurate real-time 

predictions and refined information.  

We implement three large-scale, cross-cutting innovation demonstrators and enable transfer and upscale 

by providing harmonized data and services. We initiate a new domain “sewage sociology” mining 

biomarkers of community-wide lifestyle habits from sewage. We develop new water monitoring 

techniques and data-adaptive storm water treatment and apply to water resource protection and legal 

compliance for construction projects. We enhance resilience against flooding by sensing and hydrological 

modelling coupled to urban water engineering. We will identify best practices for developing and using 

the digital services, thus addressing water stakeholders beyond the project partners. The project will 

also develop technologies to increase public engagement in water management.  

Moreover, SCOREwater will deliver an innovation ecosystem driven by the financial savings in both 

maintenance and operation of water systems that are offered using the SCOREwater digital services, 

providing new business opportunities for water and ICT SMEs. 
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EXECUTIVE SUMMARY 

The goal of D2.4 is to provide the first report describing designed and trained data-driven models. This 

description also includes the data pre-processing techniques used to split the information, detect and 

correct outliers, eliminate unrepresentative features and feature engineering. Additionally, information 

related to modelling and validation is also provided. It is important to note that a new version of this 

document will be presented on M36, enhancing current accuracy of data-driven models, and adding new 

ones. 

D2.4 corresponds with the outcome of Task 2.2 “Exploratory data analysis, data cleansing and feature 

engineering”, 2.3 “Design of advanced Machine Learning models” and 2.4 “Assessing models and 

algorithms”. 

The data-driven models are focused on 3 study cases: 

• Amersfoort case focuses on providing smart models to improve the resilience in front of 

flood, heat and drought risk; 

• Barcelona case focuses on advancing towards a resilient sewage system based on a prescriptive 

management; and 

• Gothenburg case focuses on enhancing the urban resilience by smart monitoring construction 

pollution events.  

The work done during this first year, which is described in this deliverable, includes all sorts of Machine 

Learning techniques such as sensor simulation, outlier detection, spatial predictions, data quality 

evaluation, drift detection and anomaly detection. 

Amersfoort has available a dense network of temperature low-cost and hand-built sensors for measuring 

the impact of climate change on the city. The accuracy of the sensors is limited and hence, all the 

measured time series must be validated and corrected manually. This deliverable presents the first 

iteration of a data-driven model to automatically validate temperature data.  

The Barcelona use case introduces the idea of predicting sediment level in all the sewer grid using spatial 

prediction, considering not only physical properties of the section but also properties of the nearby sewer 

sections and sediments to predict the sediment build in a specific section.  

The Gothenburg use case presents a solution to early warning of pollution events on water of construction 

sites based on Novelty Detection, that is, detecting abnormal patterns in the water quality 

measurements. 

Additionally, generic data-driven models are faced during this first year, which are used to detect 

abnormal flow patterns in the sewage system and to detect drifting behaviour of sensors. 

The main outcomes are: 

• A data-driven model based on algorithm Histogram-based Gradient Boosting Classifier to 

temperature validation. Low initial Recall Score and Precision Score was obtained, but it will be 

increased in the future enhancing the data model, adding spatial features, and improving the 

quality of the registers; 

• A data-driven model based on Gradient Boosting Regressor algorithm to predict sediment 

accumulation in the sewer grid considering not only physical properties of the section but also 

properties of the nearby sewer sections and sediments. Results were good to predict low 

sediment accumulation, nevertheless they were worst with high sediment accumulation. More 

registers are expected during the rest of the SCOREwater project allowing improving the global 

results. Additionally, new strategies will be faced, like the prediction of future sediment level 

in a section using the trend of the past values; 

• A data-driven model to predict anomalies in the water from construction sites based on algorithm 

Isolation Forest. Due to the collected data quality, only one month of normality was used to 

train the model and two anomalies to evaluate the model. Despite this data issue, the model 

results were good enough to plan future iterations following the same approach, Novelty 

Detection. More quality data will be collected during the project to improve the data-driven 

model; 
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• A data-driven model to detect anomalies on water quality sensors, obtaining a good scoring 

despite of a counterpart of detecting some false positives. One-class Support Vector Machine 

was the most reliable algorithm tested. In the future, more data will be added, and the team 

will experiment with deep learning algorithms such as Deep Belief Networks or hybrid solutions 

between auto-encoders and O-SVM; 

• A data-driven model to drift detection on ammonium and turbidity sensors. The study compares 

a batch of classification algorithms, from linear predictions to ensembles and neural networks, 

to evaluate real-time anomaly detection models. The empirical results highlight the feedforward 

Artificial Neural Network as the best model, obtaining high NAB and Precision scoring; and 

• A data-driven model to validate data quality of flow patterns. The data-driven model built by 

using the Quadratic Discriminant Analysis algorithm demonstrates encouraging results, especially 

if it is trained with a sufficiently large and representative dataset. The optimization of 

hyperparameters could improve current results, and hence should be considered during the 

second year of the SCOREwater project 
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1. INTRODUCTION 

SCOREwater focuses on enhancing the resilience of cities against climate change and urbanization by 

enabling a water smart society that fulfils SDGs 3, 6, 11, 12 and 13 and secures future ecosystem services.  

WP2 is aimed at providing a set of data-driven models to build smart water infrastructures supporting 

urban resilience, contributing to fulfil KPI 2, 4, 5, 6 & 17. Then, the WP exploits heterogeneous data and 

apply novel data analytics and machine learning techniques to create and validate smart water services. 

Data are enhanced with sharp capabilities such as signal conditioning for missing data and outliers.  

The goal of D2.4 “1st version of data-driven models report for a water smart society”, which corresponds 

with the outcome of Task 2.2 “Exploratory data analysis, data cleansing and feature engineering”, 2.3 

“Design of advanced Machine Learning models” and 2.4 “Assessing models and algorithms”, is to provide 

the first report describing designed and trained data-driven models. This description also includes the 

data pre-processing techniques used to split the information, detect and correct outliers, eliminate 

unrepresentative features and feature engineering. 

It is important to remark the interdependencies and relationships between this deliverable and the rest 

of work packages and deliverables. D2.4 takes advantages of the datasets gathered on D2.1 “Testbed 

data and sensor validation” to advance in the development of the first version of data-driven models. 

D2.4 also takes advantage of the guidelines and scripts provided by Task D2.6 “1st version of streamlined 

model evaluation environment” to ensure the quality of data-driven models. Finally, the collected results 

of D2.4 will be integrated in the SCOREwater platform through Task 3.2 “Integration of sensors, 

algorithms and models”. 

 SCOPE 

As part of the SCOREwater project, three case studies are faced in WP2. 

Amersfoort case focuses on the potential impacts of climate change in an urban environment and on the 

effectiveness of adaptation measures. Three potential impacts are monitored: (a) flood risk due to 

intensified precipitation urban public space is increasingly vulnerable to flooding, caused by several 

mechanisms (precipitation unable to enter the drainage system or sewerage system, water flowing out 

of the sewerage system through spill-ways or manholes and flooding from surface water or ground water); 

(b) heat risk due to increasingly longer periods of high temperatures the impact of the urban heat island 

effect increases as well; and (c) drought risk due to increasingly longer periods without precipitation, 

urban public vegetation suffers from water shortages 

The objective of the Amersfoort case is to assess the impacts of these risks and to investigate the 

effectiveness of measures taken to reduce the effects. To this end, for several sites in Amersfoort 

monitoring networks have been designed that cover the dominant variables related to these risks. Where 

available, existing sensors and sensor networks have been used. The main variables observed are 

temperature, air humidity, soil moisture and ground water levels. Additionally, surface water and 

sewerage data – water levels, discharge, pumping hours – are made available. 

Currently, the city council of Barcelona has maintenance and cleaning routines based on sediment levels 

to reduce the risk of blockages and odours. The Barcelona case focuses on assessing the potential impacts 

of human behaviour (for example, not-allowed discharges) and natural factors (for example, 

infrastructures degradation, rain) on sediment accumulation. For that, sedimentation will be monitored 

by applying novelty techniques based on AI. The prediction of sedimentation accumulation will allow to 

minimize the need of physical inspections of the sewage system, with the consequent improvement of 

the quality of life of workers. Additionally, Barcelona will advance towards a more resilient sewage 

system managed in a prescriptive way. 
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Construction industry is one of the major sources of pollution, responsible for around 4% of particulate 

emissions, more water pollution incidents than any other industry, and thousands of noise complaints 

every year (Gray, 2020). Gothenburg minimises such silt and pH pollution by installation of portable and 

monitored treatment stations on building sites. Nevertheless, the application of pre-emptive techniques 

to anticipate the problems, that is, prepare for the unexpected can be key to face pollution events. In 

this section, the design of data-driven models to provide an early warning system for water pollution 

events on construction is addressed. Then, the Gothenburg case focuses on studying novel techniques 

based on AI to early warning of pollution events on water of construction sites. 

Finally, Quality Assurance (QA) plays an essential part in any analytical project to ensure the validity and 

reliability of data. Effective QA ensures that decisions are made with an appropriate understanding of 

evidence and risks, and helps analysts ensure the integrity of the analytical output. Until now, two 

different data-driven models related to QA have been provided on SCOREwater. One for detecting 

anomaly flow patterns on sewage system and another to detect drift on water quality sensors. 

 DOCUMENT OUTLINE 

In particular, this document provides key information about the data-driven models, including: 

a) a brief introduction to the CRISP-DM methodology, which is followed throughout the project to 

design and validate the data-driven models (see Section 2); 

b) one section for each study case, where is depicted deeply each data-driven model, how they 

were designed and their results (see Section 3, 4 and 5); 

c) a section for describing the general data-driven models related to data quality assurance (see 

Section 6); 

d) main conclusions of the analysis (see Section 7); 

e) external references cited throughout the document (see Section 8); and 

f) annexes including useful information to understand the data analysis such as Data Science and 

Machine Learning concepts (see Annex 1) and Scoring Metrics (see Annex 2), among others. 
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2. HOW THE DATA-DRIVEN AND AI MODELS ARE CREATED 

The design of the data-driven and AI models is based on a robust and well-proven methodology for data 

mining, CRISP-DM. The CRISP-DM methodology (Wirth & Hipp, 2000) provides a structured approach, 

based on an idealized sequence of events, to planning a data mining project. It is flexible, and in 

practice, many of the tasks can be performed in a different order and it will often be necessary to 

backtrack to previous tasks and repeat certain actions. Below, Figure 2-1 presents the steps of the CRISP-

DM methodology: 

 

 

Figure 2-1. Structured approach of CRISP-DM methodology 

 FIRST STAGE: BUSINESS UNDERSTANDING 

The first stage (1. Business Understanding) goal of the CRISP-DM methodology is to uncover important 

factors that could influence the outcome of the project. For that, it is important to understand what you 

want to accomplish from a business perspective, including the objectives and available resources. 

Basically, this stage follows four steps: 

• define objectives from a business perspective; 

• describe the current situation of resources; 

• define objectives from an AI point of view; and 

• list data mining success criteria. 

To set business objectives, the primary objective should be described from a business perspective, 

including other related questions that you would like to address. For example, the primary goal for the 

Barcelona case might be to minimize the sewage blockage by predicting if it will be blocked in the near 

future. Related business questions might be “Do rainy days impact sewer blockage?” or “Will the socio-

economic level of sewerage users affect the blocking frequency?”. 

The second step is to assess the current resource situation, where the business provides detailed 

information about all the resources to be considered. To achieve a consistent result, an inventory of 

resources should be provided, listing the available resources for the project. It should include: 

1. Business 
Understanding

2. Data 
Understanding

3. Data 
Preparation

4. Modelling

5. Evaluation

6. Deployment
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• data (fixed extracts, access to live, warehoused, or operational data); 

• computing resources (hardware platforms); and 

• software (data mining tools, other relevant software) 

Concerning determine AI objectives step, a business goal states objectives in business terminology, while 

a data mining goal sets project objectives in technical terms. For example, the business goal might be 

to “minimize the sewage incidences”. A data mining goal might be “Predict the probability of sewage 

section being blocked in a few weeks, given their maintenance actions over the past three years, 

infrastructure information (length, section, material….), and demographic and weather information”. 

Finally, data mining success criteria should be defined. They are the criteria for a successful outcome to 

the project in technical terms, for example, a certain level of predictive accuracy. 

 SECOND STAGE: DATA UNDERSTANDING 

The second stage of the CRISP-DM process requires to acquire the data listed in the project resources to 

explore and analyse them and extract the understanding. The stage has four steps, which are: 

(i) collect initial data; 

(ii) describe data; 

(iii) explore data; and 

(iv) verify data quality 

The initial collection includes data loading, if this is necessary for data understanding. For example, if 

you use a specific tool for data understanding, it makes perfect sense to load your data into this tool. If 

you acquire multiple data sources, then you need to consider how and when they are integrated. 

A table with an initial data collection report is provided, it lists the data sources acquired together with 

their locations, the methods used to acquire them and any problems encountered and their resolutions 

achieved. 

Table 1. Template for details about data source acquisition 

Datasource Location Method used to acquire Problems 

Datasource 1  n/a Send via email n/a 

Datasource 2 URL XXX Query to REST API with 
python script 

No problems identified 

 

Additionally, a description of the data is essential to understand them, therefore they should be 

examined the “gross” or “surface” properties of the acquired data should be reported. For that, a table 

template is provided, which includes for each data source a brief description, its format, its number of 

records and fields.  

Table 2. Template for general details about data source 

Data Source Description Format # Registers # Fields 

Data source 1   CSV   

Data source 2  TXT   
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Table 3 enhances the collected information about the data sources, describing the features part of the 

data sources. The description includes the identifier of the feature, a brief description, the type of 

information (numerical, date, alphanumerical, categorical…), the unit of measurement (UoM) and the 

data source of which it is part. 

Table 3. Template for general details about features 

Feature Description Type UoM Data Source 

Length  Length of sewage pipe section Numerical Meters Data Source 1 

     

 

Another important step is to explore the features of collected data by using data mining querying, data 

visualization, and reporting techniques. This Exploratory Data Analysis (EDA) is comprised by a number 

of steps listed below: 

(i) identification of variables and data types; 

analysis of the basic metrics such as the mean, standard deviation (σ or SD) of each variable; 

(ii) graphical univariate analysis using box plots, histograms, pie charts, etc…; 

(iii) multivariate analysis using scatter plots, area plots and 3d plots; and 

(iv) correlation analysis using correlation matrix, and in case of using time series data, 

autocorrelation and cross correlation. 

These analyses may directly address the data mining goals. They may also contribute to or refine the 

data knowledge, and feed into the transformation and other data preparation phases needed for further 

analysis. The results of the data exploration are described through tables and plots, including first 

findings or initial hypotheses. Moreover, data quality is verified, checking if data features are correct or 

contain errors or missing values. In case of finding errors or missing data, determine when happen and 

how common these events are.  

 THIRD STAGE: DATA PREPARATION 

This is the stage of the project where the dataset is produced and described to be used during the 

modelling stage. This stage contains five steps: 

(i) select data; 

(ii) clean data; 

(iii) construct data; 

(iv) integrate data; and  

(v) format data. 

The features and quantity of them to be used for analysis is decided and reasoned, applying criteria 

based on the relevance of the data, data mining goals, the quality of the data, and also technical 

constraints such as limits on data volume or data types. Once the features have been selected, they are 

cleaned by applying different techniques with the aim of raising the data quality required. The decisions 

and actions taken to clean the data are documented. Also, the process of creation of new features and 

records, or transformation of themselves is detailed during this stage. Multiple tables or data sources are 

usually available to build the models, so they are merged and combined in order to create a single 

dataset. This process, which also includes the aggregation (e.g. accumulated rainwater during the last 

week), will be documented. 
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 FOURTH STAGE: MODELLING 

The fourth stage is aimed at designing accurate models to face the AI objectives defined on first stage 

(business understanding). For that, there are four steps: 

(i) select the data-driven algorithm; 

(ii) generate the train-test environment; 

(iii) build model; and 

(iv) assess model. 

As the first step in modelling, the specific machine learning algorithm or algorithms are selected (e.g. 

Support Vector Machine, AdaBoost) taking advantage of the conclusions extracted during the second and 

third stage, data understanding and data preparation respectively. The intended plan for training, 

testing, and evaluating the models are described. It is important to note that D2.6 “First Version of 

streamlined model evaluation environment” (M12) describes how to assess the data-driven models, 

including the list of key reference indicators. To run the modelling tool on the prepared data set, the 

tuning of the hyper parameters (parameters of the Machine Learning algorithms) is essential. It is 

depicted including the used reasoning to adjust the parameters. Once the model is built, the results are 

described including the interpretation of the models according to the domain knowledge and the data 

mining success criteria, which is defined in first stage (business understanding). Therefore, the results 

are only judged by the analytics point of view. Later, the outcomes are validated taking into account 

domain expert knowledge on stage five. Finally, if several models are created, they are ranked according 

to the evaluation criteria providing a list of generated models qualities. 

 FIFTH STAGE: EVALUATION 

The fifth stage, evaluation, is addressed to assess the efficiency and generalization of the model designed 

throughout the previous stage, modelling, from the business point of view. To sum up, there are three 

steps: 

(i) evaluate the results; 

(ii) review the process; and 

(iii) determine next steps. 

During this stage, the degree to which the designed model fits with the business and AI objectives will 

be assessed jointly with domain experts. Moreover, if the model obtained is deficient, it will be seeking 

to determine if there is some business reason. Depending on the results of the assessment and the process 

review, how to proceed will be decided through a list of possible actions and decisions.  

 SIXTH STAGE: DEPLOYMENT 

The main aim of the deployment stage is to integrate the designed models in an architecture or module 

to be executed on real time or batch. This aim is out of the scope of the WP2, where only data-driven 

models are created and persisted. WP3 includes a task, Task 3.2 “Integration of sensors, algorithms, and 

models”, whose objective includes the deployment of the models. Therefore, it will be addressed by the 

deliverable D3.3 “Integration and connection of sensors and algorithms to the SCOREwater Platform, 

including processing, storage and transformation to Open API”. 
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3. AMERTSFOORT CASE  

 FLOOD EARLY WARNING 

The City of Amersfoort (COA) is increasingly vulnerable to flooding due to intensified precipitation. On 

July 28, 2014, a precipitation event caused flooding throughout the city. The water blocked several 

tunnels and the entrance to a railway station, causing congestion and interruptions of the train service. 

An analysis of the event showed that the statistical return period for the event drops from 100 years in 

the climate of 2014 to 20 years in the climate of 2050. This event, and similar, less extreme situations 

in the past years, raised the awareness of the potential impact of relatively frequent flooding and an 

increased interest in preventive measures, like an early warning system. 

3.1.1. ITERATION 1 

3.1.1.1. BUSINESS UNDERSTANDING 

The business objective of the flood early warning system is to create a window of opportunity for the 

City of Amersfoort (COA) to take preventive measures (e.g. warn citizens or the fire department, set up 

road blocks/detours) aimed at reducing the negative impacts of a precipitation event.  

COA has identified two locations, where the potential impact of flooding is highest: 

1. the tunnel at the Schothorst railway station. Flooding of the tunnel blocks the entrance to and 

the exit from the railway station; and 

2. the ‘Stadsring’ tunnel. The Stadsring is a ring road around the city centre and is a critical part 

of the approach routes for police, ambulance, and fire department. 

In the first iteration, the flood early warning system will be focused on these two locations.  

The window of opportunity that could be created by the early warning system is a trade-off between the 

accuracy of the system, the forecast horizon, and the quality of the input data. The uncertainty of the 

precipitation forecast increases with the forecast horizon, i.e. the precipitation depth can be forecasted 

more accurately 2 hours ahead than 6 hours ahead. The precision metric is the ratio between the number 

of correctly detected anomalies and the number of the predicted anomalies, and will be used to evaluate 

the quality of the algorithm (more detailed information on Annex 1). In the first iteration, a forecast 

horizon of 2 hours will be used and a time step of 15 minutes: every 15 minutes a new binary forecast 

(flooding/no flooding) is produced for the next two hours. 

 

As historical flooding events are rare, there are only few observations to train a data driven model. 

Therefore, an artificial data set has to be produced using a hydrodynamic model of the sewerage system 

and street levels of the city of Amersfoort. By feeding this model many different precipitations events 

and recording different aspects of the floods that are simulated (occurrence, location, duration, level), 

a dataset is obtained with which a data driven model can be trained and validated. This hydrodynamic 

model (D4.17) is currently in preparation, which implies the necessary data sets for the flood early 

warning system are not yet available. The first iteration will start as soon as the data is available 

(expected in the fall of 2020). 

3.1.1.2. DATA UNDERSTANDING 

To create an early warning system described above, it is necessary to find a relationship between the 

precipitation intensity - i.e. a combination of depth and duration - and the occurrence of flooding at the 

specified locations. There is no historical data set available of flooding events, except for the visual 

observation of flooding of the Schothorst tunnel on July 28, 2014. 
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Therefore, it is necessary to create a dataset that can be used to train a classifier algorithm. This dataset 

can be created with the help of a hydrodynamic model of the sewerage system of the city of Amersfoort, 

by feeding a set of varying precipitation events to this hydrodynamic model and recording occurrence, 

duration and severity (i.e. maximum water depth) per event. 

The required hydrodynamic model is currently under construction as part of deliverable D4.18 of this 

project. As a consequence, the required data for the Flood Early Warning system is not yet available. 

This use case will be described in deliverable D2.5. 
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 HEAT RISK 

Climate change causes longer periods of hot weather, and a higher rate of occurrence of extreme 
temperatures. COA wants to investigate heat stress (observed and experienced), and how COA can 
(re)develop its city in such a way that it is able to deal with rising temperatures.  

3.2.1. ITERATION 1 

3.2.1.1. BUSINESS UNDERSTANDING 

To measure heat in Amersfoort, a relatively dense network of temperature sensors was installed and has 

been operated by a citizen initiative ‘MeetJeStad’(MJS) since 2017. As these sensors have been hand 

built at costs as low as possible, the accuracy of the sensors is limited. In order to use the data, the time 

series have to be validated and corrected. As validation by hand is tedious and subject to inconsistencies 

or errors, the MJS platform and COA would like to implement an automated data driven validation 

service. As a first iteration, the AI objective of the data driven classification model is to detect and flag 

outliers and other non-NaN (Not a Number) value anomalies, with recall (or accuracy) and precision score 

of 80%. The recall (or accuracy) metric is the ratio between the number of correctly detected anomalies 

and the number of the observed anomalies, whereas the precision metric is the ratio between the number 

of correctly detected anomalies and the number of the predicted anomalies. 

Besides the MJS data source, COA has installed a second network of temperature sensors, at fewer 

locations but with sensors that are expected to have a higher accuracy level than the MJS sensors. To 

quantify the difference in quality of both data sets, the data driven model should be operated on both 

data sets. 

3.2.1.2. DATA UNDERSTANDING 

Three different data sources are found that describe temperatures in the city at several locations (Table 

4 and Table 5). The first and second data source are respectively the measurement databases and 

validation of the temperature measurements in the MeetJeStad (MJS) project. In this citizen-initiated, 

citizen-science project, temperature and humidity are measured with stationary sensors at multiple 

locations spread across Amersfoort. 148 sensors are registered by the MJS organisation, but not all 

provide (meta) data and are thus not used in this project. In the first iteration of the Heat-risk case, 35 

sensors in the Schothorst neighbourhood are selected. The third data source is similar to the previous 

two, except that measurements are taken by the city of Amersfoort (COA) with 5 sensors. The MJS project 

is aimed at understanding the urban climate, whereas the COA sensors are mainly placed for measuring 

air quality in the city and thus measure 6 more variables besides temperature and humidity. 

Table 4. Data source acquisition – Heat Risk 

Data source Location Method used 
to acquire 

Problems 

RAW 

MeetJeStad 

http://meetjestad.net/data?type=sensors&start=YYYY-
MM-DD,HH:mm&end=YYYY-MM-DD,HH:mm&ids=#[,#[,#-
#]]&format=csv 

Or 

https://meetjestad.net/data/ 

Query to API 
via Python  

Or 

Query to 
MeetJeStad 
API 

 CSV is in 
truth tab 
delimited 

Validated 
MeetJeStad  

 Send via e-
mail 

No 
problems 
identified  

https://meetjestad.net/data/
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Data source Location Method used 
to acquire 

Problems 

Air quality 
COA 

 Send via e-
mail 

No 
problems 
identified  

 

Table 5. General details about data source – Heat risk 

Data Source Description Format # Registers # Fields 

RAW 
MeetJeStad 

MeetJeStad raw data CSV 148, 35 
used in first 
iteration 

20, but 5 

usable 

Validated 
MeetJeStad  

MeetJeStad validated temperature data CSV 148, 35 
used in first 
iteration 

2 

Air quality COA City of Amersfoort raw data CSV 5 11 

 

 

Figure 3-1. Spread of the MeetJeStad (MJS) and city of Amersfoort (COA) sensors 

Figure 3-1 presents the MJS sensors providing (meta) data and COA sensors. All variables provided by the 

data source files, together with integrated metadata, are shown in Table 6. 
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Table 6. General details about features – Heat risk 

Feature Description Type UoM Data Source 

Id Sensor identification code Numerical N/A RAW 
MeetJeStad 

Timestamp Time at measurement Date YYYY-MM-DD 
HH:mm:ss 

RAW 
MeetJeStad 

Coordinates Longitude and latitude of the 
sensor 

Coordinates Degrees with 
WGS84 

RAW 
MeetJeStad 

Temperature Temperature measured at sensor Numerical Degrees Celsius RAW 
MeetJeStad 

Humidity Humidity of the air measured by 
sensor 

Percentage N/A RAW 
MeetJeStad 

Timestamp Time at measurement Date YYYMMDDHHmm / 
YYYY-MM-DD 
HH:mm:ss 

Validated 
MeetJeStad  

Temperature Temperature measured at sensor1 Numerical Degrees Celsius Validated 
MeetJeStad  

Device id Sensor identification code Numerical N/A Air quality COA 

Timestamp Time at measurement 
(meetmoment) 

Date YYYY-MM-DD 
HH:mm:ss 

Air quality COA 

Record id  Record identification code (rij) Numerical N/A Air quality COA 

Air pressure  Air pressure at sensor 
(s_barometer) 

Numerical hectopascal Air quality COA 

CO2 

concentration 

Concentration of carbon dioxide 
measured by sensor (s_co2) 

Numerical Parts per million Air quality COA 

Humidity Humidity of the air measured by 
sensor 

Percentage N/A Air quality COA 

NO2 

concentration 

Concentration of nitrogen dioxide 
measured by sensor (s_no2) 

Numerical Parts per million Air quality COA 

PM10 

concentration 

Concentration of micro particles 
smaller than 10 micrometer 
measured by sensor 

Numerical Parts per million Air quality COA 

PM2.5 

concentration 

Concentration of micro particles 
smaller than 2.5 micrometer 
measured by sensor 

Numerical Parts per million Air quality COA 

Temperature Temperature measured at sensor Numerical Degrees Celsius Air quality COA 

Sound pressure 

level 

Sound pressure level measured by 
sensor (v_audio_total) 

Numerical decibel Air quality COA 

 
1 Per row temperatures are given for all sensors. 
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In the following, the different data sources are described in more detail. Besides, results of simple 

analyses and visualisations of the data are given. 

Data sources 1 & 2 – MeetJeStad 

The raw data (data source 1) can be acquired via a connector written in Python or via the website 

https://meetjestad.net/data/. Data is collected by citizens, part of a citizen science project to give 

insights in the urban climate. Due to this, measurement errors may be present in data (wrong placement 

of sensor stations, etc.). However, the organisation also provided a file with validated temperature data 

(data source 2). 

In the first iteration of the heat-risk case, data was gathered for 35 sensors from the MJS database 

between January 1st, 2018 and December 31st, 2019. Below, a summary is given of the copied data (data 

source 1): 

• Start date: Varying per sensor 

• End date: Varying per sensor 

• Interval: Irregular 

• Sensors: 35, spread irregularly across Schothorst neighbourhood in Amersfoort 

• Quality: dubious, but: clean timeseries available (data source 2) 

The validated dataset (data source 2) contains temperature data between January 1st, 2018 and October 

19th, 2018 for the same 35 sensors as in the raw dataset. The records are given at a regular interval of 

15 minutes. 

The following procedure was used to create the validated temperature dataset: 

1. raw data intervals are regularised to 15-minute intervals, by averaging the data in each 15-

minute bin 

2. citywide temperature quartile 1 (Q1), quartile (Q2) and quartile 3 (Q3) values are determined 

for each timestamp 

3. at each timestamp possible temperature anomalies are identified by being smaller than Q1 or 

larger than Q3 

4. a sub selection is made of the values that are 6 oC larger or smaller than the citywide Q2/median 

5. the selected values are compared with local values at the corresponding sensor and are deleted 

if they also do not fit the trend of the sensor data (opinion of the data scientist) 

Anomalies that remain in the dataset after validation are due to: 

• sensors taken indoors (to i.e. prevent being vandalised) 

• relocation of the sensor 

• placement of the sensor 

The remaining anomalies may be removed by a more rigorous validation procedure, but a large 

probability exists that ‘real’ values are then deleted rather than anomalies. 

Figure 3-2 shows temperature and humidity measurements for one of the sensors, together with the 

validated temperature data. The yearly seasonality of data is clearly visible, and so is the daily 

seasonality if a closeup is made. 

https://meetjestad.net/data/
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Figure 3-2. Temperature and humidity data as acquired for sensor 25 

Only the temperature data was interesting for determining heat risk. A global statistical analysis of the 

temperature data was done for all sensors. Table 7 is the result. The statistics for the nearby KNMI 

measurement station ‘De Bilt' are added for comparison. The following conclusions could be drawn from 

the global statistical analysis: 

• Sensor 43 has the least amount of data gaps when compared to the recording period (729 

days of observations with only 1 day missing) 

• The average and median values aligned, although the average is in most cases slightly higher 

than the median, sometimes up to 1 oC 

• A likely no data value for temperature is -26 oC, since the minimum measured temperature 

should be around –8 oC 

• Maximum temperatures of 40-43 oC should probably not be considered as anomalies, since 

these extremes did occur during July 2019. However, the maximum temperature at sensor 

148 (46.6 oC) seems to be too high and at sensor 272 (115.8 oC) seems to be a measurement 

error 

• Statistical values for sensors that measured for most of the time between January, 2018 and 

December, 2019 are similar to the values of the KNMI measuring point, although the average, 

median, minimum, and maximum temperatures are slightly higher, possibly due to the Urban 

Heat Island-effect 
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Table 7. MeetJeStad sensor statistics with statistics of temperatures measured at the KNMI measurement station De Bilt. 

Variable Temperature General 

Sensor Averag
e 

Median Max Min Standard 
deviation 

Variance Skew
ness 

Number Of 
Observations 

Start Date End Date Total 
Days 

Days Without 
Observations 

Longitude Latitude 

13 6 5.6 28.9 -7.9 5.5 30.2 0.6 9150 01-01-2018 10:02 11-06-2019 09:41 525 421 5.391367 52.17203 

25 12 11.4 40.4 -8.6 7.6 57.8 0.3 57426 01-01-2018 10:04 31-12-2019 23:54 729 19 5.381648 52.17167 

33 13.1 13.8 37.8 -8.2 8.6 74.6 0 24915 01-01-2018 10:16 18-10-2018 19:21 290 0 5.398068 52.17666 

43 11.9 11.3 42.6 -26 7.5 56.7 0.3 63652 01-01-2018 02:42 31-12-2019 23:59 729 1 5.395629 52.17291 

49 10.9 9.4 37.7 -7.6 7.6 58.3 0.4 35926 01-01-2018 00:01 19-06-2019 07:55 534 123 5.380412 52.17114 

59 13.1 13 42.6 -8.4 7.7 59.5 0.3 36344 01-01-2018 11:08 31-12-2019 23:49 729 191 5.392614 52.16843 

63 13.6 13.4 38.3 -1.9 6.7 45.2 0.3 39658 07-07-2018 19:06 31-12-2019 23:45 542 59 5.390015 52.17133 

71 23.6 23.1 37.4 13.2 5.1 25.9 0.4 1855 07-07-2018 19:24 05-08-2018 19:29 29 7 5.393013 52.16805 

76 12.7 12.3 41.1 -8.4 7.7 59 0.3 53464 01-01-2018 00:16 31-12-2019 23:52 729 83 5.396763 52.17353 

88 11.1 10.1 36.4 -6.5 6.9 47.9 0.5 27786 07-07-2018 20:15 12-06-2019 11:05 339 7 5.386767 52.16733 

109 12.3 11.7 42.7 -8.8 7.8 61 0.4 55394 01-01-2018 00:07 31-12-2019 23:47 729 49 5.386544 52.17813 

110 12.3 11.9 39.8 -8.3 7.6 57.6 0.2 50342 01-01-2018 00:42 29-08-2019 09:29 605 0 5.40234 52.1751 

122 12.1 11.4 40.5 -8.7 7.8 61.3 0.3 49872 07-02-2018 14:28 31-12-2019 23:56 692 88 5.394515 52.17122 

127 12.2 11.7 42 -8.4 7.6 57.8 0.3 53121 01-01-2018 00:13 31-12-2019 23:58 729 50 5.394623 52.17448 

139 13.2 12.9 40.9 -6.5 7.4 55.1 0.3 38259 30-06-2018 16:54 02-10-2019 02:11 458 0 5.389784 52.17318 

145 11.8 10.8 38.6 -6.8 7.4 55 0.5 30843 07-02-2018 16:52 08-07-2019 06:28 515 156 5.386188 52.16803 

148 13.3 12.8 46.6 -6.9 7.8 60.4 0.4 35248 30-06-2018 16:50 09-09-2019 21:08 436 0 5.390242 52.17348 
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Sensor Averag

e 
Median Max Min Standard 

deviation 
Variance Skew

ness 

Number Of 

Observations 
Start Date End Date Total 

Days 

Days Without 

Observations 
Longitude Latitude 

173 12.2 11.1 36.4 -4.6 7.1 49.8 0.5 29309 30-06-2018 17:14 12-06-2019 13:46 346 0 5.389696 52.17321 

174 18.4 18.1 38.1 2.6 6.2 38.3 0.3 8347 04-02-2018 20:21 18-10-2018 20:25 256 158 5.390985 52.17546 

177 13.1 12.7 40.6 -6.8 7.4 55.2 0.3 36771 04-02-2018 19:18 20-09-2019 04:35 592 150 5.391434 52.16823 

182 10.4 9.4 37.1 -9.3 7.8 60.3 0.3 35166 01-01-2018 00:00 11-03-2019 02:05 434 1 5.377534 52.16848 

205 14.6 14.9 41.7 -1.9 7.2 51.2 0.2 18233 09-05-2018 13:32 31-12-2019 23:59 601 369 5.403155 52.17515 

250 12.1 11.1 37.1 -6.8 7.3 53.4 0.3 31846 07-07-2018 20:10 13-08-2019 00:40 401 26 5.391069 52.17823 

269 21.1 20.7 40.9 12.7 4.6 21.1 0.3 1013 17-06-2018 13:42 20-07-2018 17:05 33 21 5.403531 52.17507 

270 12.8 12.2 41.2 -7.2 7.7 59.1 0.4 34359 09-07-2018 14:01 06-09-2019 04:45 423 4 5.386526 52.16984 

272 13.7 13.7 115.8 -26 8 64.7 -0.3 35798 17-06-2018 14:01 31-12-2019 23:29 562 125 5.398406 52.17178 

273 11.9 10.9 39.4 -7 7.5 55.7 0.5 29959 01-07-2018 14:18 27-06-2019 22:20 361 0 5.382196 52.16753 

274 12.3 11.5 39.3 -7.8 7.7 59.6 0.4 31568 01-07-2018 13:36 03-08-2019 17:54 398 6 5.398862 52.17416 

276 12.9 12.6 41.7 -8.1 7.8 61.5 0.3 34132 01-07-2018 13:07 31-12-2019 23:49 548 123 5.391066 52.16706 

279 12.3 11.4 41.6 -26 7.4 55.1 0.4 40002 09-07-2018 13:00 31-12-2019 23:44 540 53 5.381558 52.17179 

284 13 12.6 40.1 -6.6 7.4 54.9 0.3 36640 07-07-2018 19:02 09-09-2019 04:18 428 0 5.39033 52.16915 

288 12.1 11.5 39.7 -7.7 7.2 51.9 0.4 42319 07-07-2018 20:03 31-12-2019 23:56 542 28 5.392847 52.16951 

289 12.8 12.3 38.4 -6.1 7.3 53.4 0.3 35282 09-07-2018 13:29 22-08-2019 20:10 409 0 5.3837 52.17002 

290 12.7 12.1 42.1 -26 7.7 59.5 0.4 38377 09-07-2018 07:45 31-12-2019 23:44 540 87 5.383709 52.1739 

300 13.2 12.9 42.7 -7.2 7.5 57 0.4 38133 09-07-2018 13:24 02-10-2019 13:06 449 4 5.384125 52.17279 

KNMI-De 
Bilt 

11.3 10.8 37.2 -8.4 7.1 50.8 0.2  01-01-2018 00:00 31-12-2019 23:59     
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In the further global analysis of the data, a scripting environment for Python, named Jupyter notebook, 

is used. The analysis consists of the inspection of: 

• histograms 

• auto correlation 

• cross correlation 

• plots of temperature vs. time 

Conclusions are reported in this paragraph together with only some visualisations. The data and notebook 

can be shared upon request. 

 

Histograms for most sensors exhibit a behaviour similar to the histogram for sensor 25 (Figure 3-3): 

• two ‘peaks’, at 5-7 oC and at 15-17 oC. These peaks seem to correspond to frequent 

temperatures during the respectively winter and summer period. 

• ‘shallow’ valley in between the two peaks 

• slightly right skewed//left tail shorter than right tail (corresponds to mostly positive 

skewness in Table 7) 

 

Figure 3-3. Histogram for raw temperature data at sensor 25 

The correctness of a temperature measurement could be derived from prior measurements; a 

temperature of 20 OC seems odd if the temperature 15 minutes ago at the same location was measured 

to be 10 OC. To train an algorithm that flags outliers and other non-NaN anomalies, information is needed 

on which previous measurements could be used to determine if the current measurement is correct. This 

information is explained with autocorrelation (see Annex 1). 
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With autocorrelation, it is determined how data points in a time series correlate to data points with the 

same (delayed) index in the same time series. A timeseries is thus correlated with its copy. If no changes 

are made to the copy, the correlation value (usually the Pearson correlation) is equal to 1. If the indices 

of the copy are shifted one index position to the left or right, or by one lag, the correlation value 

describes how well data points are correlated with the previous or following data point. Furthermore, 

recurring signals could be observed with autocorrelation in data that is linked to recurring events. An 

example is temperature data. As the data is linked to a day-night cycle, high autocorrelation values are 

expected if the used lag corresponds to a 24 hour-shift of data points. 

A requirement for autocorrelation is that data points are equally distributed over time. Therefore, the 

raw datasets were formalised to datasets with values per 15 minutes. Each value is the average of raw 

values within this 15-minute window.  

The correctness of a temperature measurement can also be evaluated with averages taken over larger 

windows. Besides autocorrelation on the formalised 15-minute temperature averages, autocorrelation 

was also carried out on datasets resampled to: 

• hourly-averaged values 

• daily-averaged values 

• weekly-averaged values 

• monthly-averaged values 

 

Autocorrelation coefficients for a multitude of lags were calculated for each resampled dataset of 

temperature data for each sensor. The autocorrelation plots (Figure 3-4) have on the y-axis the 

correlation value and the lag on the x-axis. As said before, each lag represents a shift in indices of the 

data points, so if data points are gathered each 15 minutes, a lag of 1 signifies that a data point is 

compared to a data point  of 15 minutes ago, and likewise a lag of 10 signifies that a data point is 

compared to a data point  of 150 minutes ago. 

The following observations are made: 

• a daily seasonality in Figure 3-4a) and b), as local maxima occur at lags representing a 

multitude of 24 hours (for example, 96 lags for 15-minute-averaged values and 24 lags for 

hourly) 

• a yearly seasonality in Figure 3-4d) and e), as local maxima occur at lags representing one 

year (52 lags for weekly-averaged values and 12 lags for monthly) 

• rapidly changing correlation coefficients for sensors with data gaps or data for a limited 

period 

• a bandwidth within which correlation coefficient values are described for most sensors 

• sensors of which correlation coefficients are not contained within the bandwidth, often have 

limited data (sensors 13 (orange), 174 (yellow), 269 (light blue), and 71 (green)) 

The last three observations inform us that dropping temperature data measured by some sensors from 

the training data set, might improve the quality of the trained algorithm if results should disappoint. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 3-4. Autocorrelation coefficients for all sensors for temperature averaged over different 
intervals, namely a) 15 minutes, b) hours, c) days, d) weeks, and e) months. Lags taken correspond to 
the aggregation period, i.e. for daily data is lag=1 equal to a lag of 1 day, lag-2 equal to 2 days, etc. 
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The correctness of a temperature measurement could not only be evaluated with previous observations 

made by the same sensor, but also with temperature measurements made at the same time by other 

sensors. Cross-correlation of temperature data measured by different sensors provides information on 

which other sensors could be used for the evaluation of correctness of measurements of a certain sensor. 

With cross-correlation (see Annex 1), it is a measure of similarity of two series as a function of the 

displacement of one relative to the other. The correlation value (usually the Pearson correlation) is equal 

to 1 if one timeseries has the same data point pattern as the time series with which it is correlated. 

N.B.: data points do not need to have the same values at the same indices, only the overall pattern has 

to be the same. If data of two sensors are well-correlated and a relatively high temperature is measured 

at a certain time by a sensor, the temperature measurement at the other sensor is also expected to be 

relatively high. If this is not the case, it might be a reason to doubt the correctness of the measurement 

done by either sensor. 

For the cross-correlation analysis, the 15-minute averaged dataset was used, that was originally made 

for the auto correlation analysis. The reason is that data timestamps are originally not set at a regular 

intervals and cross correlation cannot be carried out if corresponding data points do not share the same 

timestamp.  

Figure 3-5 the cross-correlation values pairwise between sensors in a cross-correlation matrix. The cross-

correlation value between one sensor and the other is the same as the cross-correlation value between 

the latter and the former. This allows the matrix to be simplified to a triangular matrix. If one needs to 

know the cross-correlation value between temperatures measured by sensor 182 and another sensor, one 

either looks in the row or the column headed by ‘sensor182’, depending on where a pair is made between 

sensor 182 and the sensor of interest. For example, the cross-correlation between sensors 182 and 139 

is 0.99 and is found at the intersection of row ‘sensor182’ and column ‘sensor 139’. The cross-correlation 

value between a sensor and its copy is equal 1 and is thus left out of the matrix.  

The following observations are made: 

• Almost all sensors have a high cross-correlation coefficient with all sensors. Measurements made 

by a certain sensor could thus be checked and, if needed, corrected with the use of temperature 

data measured by other sensors. 

• Sensor 13 is highly correlated with only some sensors (182, 25, 33, 43, 49, 69 and 76) 

• Some sensors have a slightly less strong correlation with most sensors (r<0.98), being sensors: 

o 174 

o 269 

o 272 

o 274 

o 290 

o 33 

o 63 

o 71 
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Figure 3-5. Cross-correlation of 15-minute averaged temperature data 

 

By plotting temperature against time only, and not datetime, values at the same time of day can be 

compared. This provides the option to create bandwidths for certain periods of time with which new 

temperature values can be tested for being an anomaly. Figure 3-6 presents the raw and validated 

temperature data at sensor 43, plotted against time of day. From this kind of graphs, temperature 

bandwidths and temperature trends during the day could be quantified. A strength is that outliers, such 

as depicted in the figure, are detected immediately. Also, similar daily temperature trends could be 

distinguished; at most sensors, temperatures rise and fall in a sinusoid fashion during the day, but for 

some sensors (110, 139, 145, 148, 205, 272, 276, and 288) a slow rise and a steep fall are observed. One 

should keep in mind that in Figure 3-6 no distinction is made in seasonal variation and that the bandwidth 

is thus very broad. Nonetheless, significant outliers can still be detected as seen in the raw data figure 

around 22:00. Bandwidths per day of the year could be plotted in the future as timeseries for multiple 

years are then available 



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 38 

A weakness is, however, that the upper side of the bandwidth is likely to increase further in coming years 

due to climate change and the more frequent occurrence of extremely high temperatures. An algorithm 

that focuses on temperature bandwidths should thus be able to keep learning from new (validated) data. 

 

Figure 3-6. Temperature data measured by sensor 43 plotted against time 

 

Data source 3 - City of Amersfoort 

The data is acquired from a contact person of the city of Amersfoort (COA). The data was collected 

during a pilot in which air quality was measured. Professional sensors were used and that these have 

been installed by professionals, and thus it is assumed that the data contains a relatively small number 

of anomalies caused by human or measuring errors. The assumption on data quality cannot be tested as 

at the time of writing no validated dataset is available. 

Data was gathered for 5 sensors from the COA database between November 1st, 2018 and November 30th, 

2019 (full length of the project). Below, a summary is given of the data: 

• Start date: 01-12-2018 02:00 

• End date: 30-11-2019 23:00 (except for one sensor, which gathered data till 21-11-2019 

15:00) 

• Interval: Hourly 

• Sensors: 5, with: 

o 3 located near main roads (sensors 14542, 14544 and 14577, with sensor 14544 having 

more surrounding vegetation))  

o 2 located in the middle of neighbourhoods (sensors 14522 and 14531) 

o all sensors were placed on streetlights, which always lid by the sun during the day  

• Quality: good (assumed) 

Figure 3-7 shows temperature and humidity measurements of one of the sensors, sensor 14531. In July 

2019, a possible anomaly is observed, with unexpected continuous relatively low summer temperatures. 

Upon closer observation, it is concluded that this ‘anomaly’ is caused by data gaps; the measurements 

were only taken at certain hours of the day (instead of all hours), which were mostly night-time hours. 

This explains why only low temperatures are present for this period in the dataset. Similar ‘anomalies’ 

for other periods are seen at sensors 14542 and 14544. 
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Figure 3-7. Temperature and humidity data as acquired for sensor 14531 

 

Only the temperature data was interesting for determining heat risk. A global statistical analysis of the 

temperature data was done for all sensors. Table 8 is the result. The following conclusions could be 

drawn from the global statistical analysis: 

• sensors 14577 has the least amount of data gaps when compared to the recording period 

(8719 observations with 0 days missing). 

• median and average temperatures are not as well aligned as was the case with the MJS 

sensors; average temperatures at all COA sensors are at least 1 oC higher than the median 

temperatures. 

• with all maximum temperatures being above 44 oC (and the maxima of the MJS sensors), it 

could be assumed that the quality of measured extreme temperatures is dubious. An 

explanation for the high temperatures could be that the air temperature measured inside 

the measurement stations was hotter than the actual air temperature, because all sensors 

are in full sunlight during the whole day. Sensor 14544 has relatively more surrounding 

vegetation when compared to the surroundings of the other sensors, which might explain the 

measured maximum and the minimum temperatures where respectively relatively lower and 

higher than at other sensors that are more in the open 

• when compared to the statistical values for temperatures measured by the KNMI at station 

De Bilt between December, 2018 and November, 2019, COA sensors seem to have consistently 

measured higher temperatures (higher average, median, and minimum temperatures), but 

also higher and more frequent high temperatures (higher maximum temperatures and higher 

standard deviation, variance, and skewness values). The same is true to a less extent when 

temperature statistics of COA sensors are compared to temperature statistics of MJS sensors. 
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Table 8. COA sensor statistics with statistics of temperatures measured at the KNMI measurement 
station De Bilt 

Temperature 

Sensor Average Median Max Min Standard 
deviation 

Variance Skewness 

14522 13.5 12.5 47.2 -5.3 8.0 63.6 0.7 

14531 13.3 12.1 45.8 -6.2 8.4 70.7 0.7 

14542 13.3 12.3 47.9 -6.3 8.2 67.3 0.7 

14544 13.6 12.4 44.7 -5.7 8.3 68.8 0.6 

14577 14.3 13.0 51.5 -5.2 8.6 74.3 0.8 

KNMI- 
De Bilt 

11.2        10.7 37.2   -7.8 6.6 44.1 0.3 

General 

Sensor Number Of 
Observation
s 

Start Date End Date Total 
Days 

Days Without 
Observations 

Longitude Latitude 

14522 8494 01-12-2018 
02:00 

21-11-2019 
15:00 

355 0 5.391 52.15 

14531 8457 01-12-2018 
02:00 

30-11-2019 
23:00 

364 0 5.405 52.167 

14542 8292 01-12-2018 
02:00 

30-11-2019 
23:00 

364 6 5.405 52.193 

14544 8326 01-12-2018 
02:00 

30-11-2019 
23:00 

364 3 5.416 52.161 

14577 8719 01-12-2018 
02:00 

30-11-2019 
23:00 

364 0 5.403 52.158 

 

In the further global analysis of the data, a jupyter notebook is used. The analysis consists of the 

inspection of: 

• histograms 

• auto correlation 

• cross correlation 

• plots of temperature vs. time 

Conclusions are reported in this paragraph together with only some visualisations. The data and notebook 

can be shared upon request. 
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Histograms for most sensors exhibit a behaviour similar to the histogram for sensor 14577 (Figure 3-8): 

• a peak at 5-7 OC 

• an edge right of the peak at 15-17 OC 

• right skewed//left tail shorter than right tail (corresponds to mostly positive skewness in 

Table 7) 

• noteworthy peak at the 17-18 OC bin for sensor 14542 

The histograms for COA data are more normal-distributed than they are for MJS data, with respect to 

the presence of a single peak. Because of this and the right-hand tail reaching higher positive values than 

in the histograms for the MJS sensor data, the skewness is more pronounced in the COA histograms. 

 

Figure 3-8. Histogram for raw temperature data at sensor 14577 

Autocorrelation was carried out for the COA data too. The how and why of autocorrelation is explained 

in section of MJS data exploration. Also, the correctness of a COA temperature measurement can be 

evaluated with averages of larger windows. Besides autocorrelation on raw dataset with hourly 

observations, autocorrelation was also carried out on datasets resampled to: 

• daily-averaged values 

• weekly-averaged values 

• monthly-averaged values 

Autocorrelation coefficients were calculated for each dataset. Figure 3-9 presents the results. The 

following observations are made: 

• a daily seasonality in Figure 3-9a) and b), as local maxima occur at lags representing a 

multitude of 24 hours (for example 96 lags for 15-minute average values and 24 lags for 

hourly) 

• a yearly seasonality in Figure 3-9 c) and d), as local maxima occur at lags representing 24 

hours (52 lags for weekly average values and 12 lags for monthly) 



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 42 

 

 

a) 

 

b) 

 

 

c) 

 

d) 

Figure 3-9. Autocorrelation coefficients for all sensors for temperature over different intervals, namely 
a) hours, b) days (averaged), c) weeks (averaged), and d) months (averaged). Lags taken correspond to 
the aggregation period, i.e. for daily data is lag=1 equal to a lag of 1 day, lag-2 equal to 2 days, etc. 

 

For the cross-correlation analysis, the hourly values were used. Correlation values are presented in Figure 

3-10 in a similar fashion as was done in the MJS data exploration (Figure 3-4): 

• all sensors have a high cross-correlation coefficient with all sensors. Measurements made by 

a certain sensor could thus be checked and, if needed, corrected with the use of temperature 

data measured by other sensors 

• sensors located near main roads are as well cross-correlated with sensors in neighbourhoods 

as with other sensors near main roads, and vice versa 
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Figure 3-10. Cross-correlation of the temperature data 

 

By plotting temperature against time only, and not datetime, values at the same time of day can be 

compared. This provides the option to create bandwidths for certain periods of time with which new 

temperature values can be tested for being an anomaly. Figure 3-11 presents the temperatures measured 

by sensor 14577, plotted against time of day. Sensor 14522 shares a similar pattern with temperatures 

slowly building towards 18:00, and then steeply falling. For the other sensors, a less shared, but other 

pattern is observed with a steep rise in temperatures at 9:00 and a fall at 18:00. This explains the high 

cross-correlation coefficient value for sensors 14522 and 14577 (see Figure 3-10). 

 

 

Figure 3-11. Temperature data measured by sensor 14577 plotted against time 

 

3.2.1.3. DATA PREPARATION 

It was decided to select the MJS data for further use and to not use the CoA data in the first iteration of 

the Heat-risk case. The reason for the second decision was the unavailability of validated CoA data. Of 

course, a validated dataset could be constructed following the same procedure as was used by the MJS 

organisation. However, the MJS organisation do have exact knowledge of how sensors are configured and 

thus has a better judgement of what records could be anomalies and which could not be anomalies. We 

lack this knowledge to do the same for the CoA data. 
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The main part of the raw data cleaning was appropriating the raw data for the comparison with the 

validated data. The data was cleaned by: 

• resampling the records of the raw dataset with the same interval as is present in the 

validated dataset, being 15 minutes. The value of the records was determined by averaging 

the observed temperatures till the new timestamp plus 15 minutes 

• removing records from the validated dataset that satisfied the requisites below: 

o contained missing values 

o corresponding record in raw dataset also contained missing values 

o corresponding record in raw dataset is only preceded or followed by records with 

missing values till respectively January 1st, 2018 or October 19th, 2018 

• clipping the raw dataset to the temporal extent of the validated dataset, being January 1st, 

2018 till October 19th, 2018, or to a smaller extent if the validated dataset has valid records 

for a shorter period 

From the cleaned raw dataset, a feature dataset with 573875 records was constructed that contains the 

following 18 features: 

Table 9. Data model used to learn – Non-nan anomaly detection in temperature data 

Feature Description Type 

Sensor  This feature is dropped in 
modelling, but is included in the 
feature dataset for evaluation 
purposes 

Integer 

DayOfYear Day number derived from the 
record’s timestamp 

Integer 

HourOfDay  Hour derived from the record’s 
timestamp 

Integer 

QuarterOfHour  Quarter of the hour derived from 
the record’s timestamp 

Integer 

Longitude  Longitudinal coordinate of sensor 
location 

Float 

Latitude  Latitudinal coordinate of sensor 
location 

Float 

temperature_lag  Temperature measured by the 
sensor at the record’s timestamp 
(lag=0) or up to 3 timestamps prior 
(0<lag<=3) 

Float 

temperature_mean_past_hour_lag  Mean of temperatures measured by 
the sensor during the hour 
preceding the record’s timestamp 
(lag=0) or 8 and 16 timestamps prior 
(corresponding with 2 and 4 hours 
ago) 

Float 
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Feature Description Type 

temperature_mean_past_day  mean of temperatures measured by 
the sensor during the 24 hours 
preceding the record’s timestamp 

Float 

temperature_mean_past_week  mean of temperatures measured by 
the sensor during the week 
preceding the record’s timestamp  

Float 

temperature_variance_past_hour  variance of temperatures measured 
by the sensor during the hour 
preceding the record’s timestamp  

Float 

temperature_variance_past_day  variance of temperatures measured 
by the sensor during the day 
preceding the record’s timestamp 

Float 

temperature_variance_past_week  variance of temperatures measured 
by the sensor during the week 
preceding the record’s timestamp 

Float 

anomaly (target feature) False if temperature measured by 
the sensor at the record’s 
timestamp in the raw data 
corresponds with the temperature 
at the record’s timestamp in the 
validated data, True if otherwise. 
N.B.: if at the record’s timestamp 
the raw and validated temperature 
is a NaN-value, the instance is not 
marked as an anomaly, as the goal 
of the algorithm is not to detect 
existing data gaps. 

Boolean 

 

Missing values in the constructed feature dataset were inputted by replacing these with means of the 

features. The imputed values are marked by a mask. The mask is a Boolean array with the same size as 

the feature dataset, which contains a True value at locations corresponding with the missing value 

locations in the feature dataset array.  

The last transformation of the dataset is a standardised scaling. For each feature, the mean was deducted 

from the records and the results were divided by the standard deviation of the feature’s records. 

 

3.2.1.4. MODELLING & EVALUATION 

The AI objective of the data driven classification model to be designed in the current case is to detect 

and flag outliers and other non-NaN (Not a Number) value anomalies in temperature timeseries. To make 

sure that not all available data was used for model fitting and calibration and that ‘unseen’ data was 

left to test the model with training and test datasets were produced. The test dataset contained samples 

from September and October 2018. The training set contained samples for the eight preceding months 

(January to August 2018). Since this is the first iteration, only the training dataset is used to evaluate 

the performance and potential of the models in this use case. From the training set, smaller subsets were 

made according to the Time Series split technique (see Annex 3) and were used as training and validation 

datasets in cross-validation. 
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Model performances were evaluated using two metrics, being the recall and the precision scores. The 

former is the ratio between the number of correctly detected anomalies and the number of the observed 

anomalies, whereas the latter is the ratio between the number of correctly detected anomalies and the 

number of the predicted anomalies. 

In the first iteration, two classifiers types have been used to build algorithms, being the histogram-based 

Gradient Boosting classifier (HBGB) and the AdaBoost classifier. The HBGB classifier is different from the 

regular Gradient Boosting classifier as feature values are first binned before the classifier is fit by the 

training set (Sci-kit learn, 2019). Because a separate bin is reserved for missing values, the HBGB 

classifier can cope with missing values in the input data set, whereas the regular Gradient Boosting 

classifier could not.  

Table 10 presents the evaluation metric scores for both used classifiers. These scores are the weighted 

averages across the cross-validation iterations, with weights being proportional to the number of samples 

in the training set per cross-validation iteration. The HBGB classifier did to some extent correctly detect 

only anomalies (precision), but was even worse at detecting all anomalies (recall). The AdaBoost 

classifier only detected non-anomalies, thus the precision score was zero and the recall did not provide 

a number (division by zero). 

Both classifiers do not meet the objective of 80% accuracy in anomaly detection. 

 
Table 10. Evaluation metric scores for used classifiers 

Algorithm Recall Score Precision Score 

HBGBC 0.04 0.20 

AdaBoost 0.0 n/a 

 

Observing these results, the design of a new data model will be a first solution to improve the ability of 

detecting non-NaN temperature values with machine learning, before finetuning the used classifiers or 

using other classifiers or even moving on to model evaluation. The reason being that it was discovered 

after internal discussions that temporal, but more importantly, spatial information is included in an 

erroneous way in the data model. The data model could be reformed in the first iteration to include 

temporal information in a better way, but not the same could be said for the spatial information.  

Rather than using coordinates, closely correlated sensors will be ‘linked’ directly by including 

temperature values of neighbouring sensors in a dataset entry. Since the measurements of almost all 

sensors are quite well correlated with each other (see Figure 3-10), the four closest sensors are selected 

to be included in a sample (given of course that they are well correlated (R>0.98) with the sensor of 

interest). Table 11 presents the design of the data model that will be used in the second iteration. 
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Table 11. Data model used to learn in second iteration – Non-NaN anomaly detection in temperature 
data 

Feature Description Type 

Sensor  This feature is dropped in 
modelling, but is included in the 
feature dataset for evaluation 
purposes 

Integer 

temperature_lag  Temperature measured by the 
sensor at the record’s timestamp 
(lag=0) or up to 3 timestamps prior 
(0<lag<=3) 

Float 

temperature_mean_past_hour_lag  Mean of temperatures measured by 
the sensor during the hour 
preceding the record’s timestamp 
(lag=0) or 8 and 16 timestamps prior 
(corresponding with 2 and 4 hours 
ago) 

Float 

temperature_mean_past_day  mean of temperatures measured by 
the sensor during the 24 hours 
preceding the record’s timestamp 

Float 

temperature_variance_past_week  variance of temperatures measured 
by the sensor during the week 
preceding the record’s timestamp 

Float 

neighbour_sensor_#_temperature_lag Temperature measured by the 
closely correlated neighbouring 
sensor # (0-3) at the record’s 
timestamp (lag=0) or up to 3 
timestamps prior (0<lag<=3) 

Float 

anomaly (target feature) False if temperature measured by 
the sensor at the record’s 
timestamp in the raw data 
corresponds with the temperature 
at the record’s timestamp in the 
validated data, True if otherwise. 
N.B.: if at the record’s timestamp 
the raw and validated temperature 
is a NaN-value, the instance is not 
marked as an anomaly, as the goal 
of the algorithm is not to detect 
existing data gaps. 

Boolean 

 

Besides a new data model, also the performance of the Robust Covariance and Isolation Forest classifiers 

will be assessed alongside with the performance of the HBGB and AdaBoost classifiers, as they are 

mentioned in the SciKit-learn documentation on Outlier detection (or non-NaN value anomaly detection).  
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 GROUND WATER / SOIL MOISTURE: OPTIMISATION 

A third effect of climate change to the urban environment is drought: long periods without significant 

precipitation. Urban vegetation (parks, trees), historically adapted to a moderate climate with an 

average monthly precipitation depth of 60 mm, suffer from these elongated dry periods, leading to 

limited growth and increased vulnerability to plagues or illnesses. This has a negative effect on the urban 

livelihood. 

COA has several options to mitigate the effects of droughts, e.g. watering trees and parks or changing to 

other, more drought resistant vegetation. As these measures are expensive, COA wants to investigate an 

optimal strategy to fight droughts. 

3.3.1. ITERATION 1 

3.3.1.1. BUSINESS UNDERSTANDING 

Trees and other vegetation take up water with their roots from the ‘vadose’ or unsaturated zone. This 

is the upper layer of the soil, between the surface level and the ground water table. In the City of 

Amersfoort and its surroundings, the thickness of the unsaturated zone typically varies between 0.5 - 3 

m. 

Soil moisture is the water that is contained in the unsaturated zone between the soil particles. The 

amount of soil moisture available to plants depends on the soil type (e.g. clay, sand, silt), the amount 

of precipitation and the depth of the groundwater table. 

Soil moisture sensors can be very accurate, but have an extremely low geographical reach, due to the 

heterogeneity of the soil. Typically, one sensor has a reach of 0.1 - 0.2 m. Therefore, several soil moisture 

sensors are usually deployed in a vertical line, providing a ‘soil moisture horizon’ between the surface 

level and the ground water table at one location.  

Research in the Netherlands has shown a relatively strong correlation between soil moisture content 

(observed by a cluster of vertically placed sensors) and the ground water table, especially in rural areas. 

The latter hydrological variable is much easier to observe and has a wider geographical reach - i.e. a less 

dense network is required to capture the variations within an area. 

The COA and the MJS platform want to investigate the correlation between soil moisture available to 

vegetation and the ground water table in the urban area of Amersfoort. With this correlation established 

and quantified, the existing ground water observation network can be used to characterise the 

vulnerability to drought for different areas within the city (e.g. vulnerable - moderate - robust). This 

information can serve as a basis for a drought mitigation plan and as a source of information for urban 

planning. 

As a first iteration, a regression model is derived to estimate soil moisture content based on ground 

water level observations. 

The soil moisture network is currently being installed as part of deliverable D4.17. The business case 

described above will be elaborated in deliverable D2.5. 
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4. BARCELONA CASE 

 SEDIMENT LEVEL PREDICTION ON SEWAGE SYSTEM 

Sewer systems are among the most critical urban infrastructures, suffering from a tremendous variety of 

problems. Sewer chokes are blockages typically caused by faulty human behaviour such as discharging 

fats, oils, and wet wipes, which must be recycled, and also produced by natural factors such as tree 

roots. A blockage may lead to uncontrolled overflows into public or private property. 

Sewer systems have old regions, new regions, regions that have difficult access due to structural 

restrictions, and regions at high risk toward blockages. Not only the sewer conditions themselves are 

involved in the potential blockages, but also the geographical location, such as a location with a lot of 

bars and hotels, or a location with a high concentration of trees and plants. To prevent blockages, Water 

and Sewerage Companies (WaSCs) carry out inspections into the sewerage system, but because of the 

high monetary cost, there is a huge interval between inspections. Furthermore, to identify each 

blockage, the number of inspections needed in the sewer system is high, causing an inevitable risk of 

blockages.  

4.1.1. ITERATION 1 

4.1.1.1. BUSINNESS UNDERSTANDING 

To reduce the risk of blockages, the city council of Barcelona follows maintenance and cleaning routines 

over all the sewage system in the city. One of the key factors to decide if a cleaning is needed is the 

sediment level, which is the accumulation of sand, oils, fats, or other objects that may obstruct the 

sewer. 

The city council spends a lot of money in each maintenance done, not only on the sewer cleaning but on 

the revisions. The business objective is to reduce the number of revisions needed by predicting the actual 

sediment level in a section, so the manager can decide which sections have preference of being reviewed 

and how fast it needs to be done. 

The AI objective is to predict the height of sediment level in a concrete section, obtaining another 

indicator to decide if the section should have maintenance. The approach will focus on spatial prediction, 

using the physical properties and sediment levels of the nearest sections to predict the actual level of 

the section to evaluate. 

In this study, the dataset used contains information about a sewer grid in Barcelona, in the neighbourhood 

of Poblenou. The data contains the physical properties of different sections in the sewer and historical 

sediment levels extracted during maintenance routines. 

There are a couple of criteria to achieve a successful model, one being low error in our predictions when 

evaluating the model and the second to keep predicting well in the future, having a model with good 

generalization when different data is used. 

4.1.1.2. DATA UNDERSTANDING 

To understand the sewer data, an exploratory data analysis was done with fixed guidelines. At the 

beginning of an exploration, it is important to identify which are the variables available and the type of 

each one to decide which are the analytics that can be applied. The merged dataset contains physical 

information about each section in the sewer grid and sediment levels, resulting in historical data of 23 

columns and 2452 entries. At a first glance, the low amount of entries indicate the models created are 

not good enough, so the team decided to analyse and extract features that could assure having better 

models while including new entries, but also have a model that provides competent predictions at the 

beginning. 
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The datasets received until now come from different files sent by email. Table 12 identifies each 

datasource and addresses some details about the location, Table 13 describes each file and provides the 

length and format of the file, and Table 14 gives more detail on each feature in the dataset. 

Table 12. Details about data sources – Sediment level prediction on sewage system 

Datasource Location Method used to acquire Problems 

Node Local directory Received by email - 

Section Local directory Received by email - 

Odour problems Local directory Received by email Only 16 registers, small 
quantity which cannot 
be analysed 

Sediment measures Local directory Received by email - 

Materials catalogue Local directory Received by email - 

Property details Local directory Received by email - 

Section type Local directory Received by email - 

 

As explained in Table 12, the files have been received by email. There is no problem with these files 

since the training of the models can be done with batch data and in the future when the model gets 

deployed, the registers can be delivered in real time one by one. 

 

Table 13 shows low registers in all the datasets, and only 2453 registers as sediment measures. The team 

would like to include more registers in the future to secure the model generalization. 

 

Table 13. General details about available data sources – Sediment level prediction on sewage system 

Data Source Description Format # Registers # Feature 

Node Structural union of different sections and 
structural change of a section 

CSV 405 4 

Section Portion of the sewer between two nodes CSV 444 10 

Odour 
problems 

Point where an issue was recorded CSV 16 3 

Sediment 
measures 

Historical measures done in a section CSV 2453 5 

Materials 
catalogue 

Materials that compose a section CSV 38 2 

Property 
details 

Not all the sewer in Barcelona pertains to the 
city council. This file points out each manager 
for a section. 

CSV 63 2 

Section type Dimensions and format of the sewer CSV 2093 9 
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Table 14 shows that most of the features are text, which may be categorical or just explanatory. 

Explanatory variables should be converted into categorical, and the categorical variables right now 

should be transformed to a correct format for the ML algorithms. The other variables are numbers, which 

should be analysed during the next steps. 

 

Table 14. General details about available fields – Sediment level prediction on sewage system 

Field Description Type UoM Data Source 

Id Identifier of the register Numerical - Section 

Section Text identifier of the section Alphanumerical - Section 

Length Section length Numerical m Section 

Material Material identifier of the section 
walls 

Numerical - Section 

Velocity Residual water velocity Numerical m/s Section 

Water height Height occupied by the water Numerical m Section 

Flow Flow of the water Numerical m3/s Section 

% Occupied Percentage occupied by the 
water 

Numerical % Section 

Special 
property 

Indicates an important property 
of the section 

Categorical - Section 

Id Register identifier Numerical - Odour 
problems 

Date Date of gathering Date DD/MM/YYYY Odour 
problems 

description Citizen explanation Textual - Odour 
problems 

id Register identifier Numerical - Sediment 
measures 

parameter Type of sediment measured Categorical - Sediment 
measures 

Value In the cases a measure is needed, 
this is the value of it 

Numerical Depends on 
the sediment, 
mostly is 
meters 

Sediment 
measures 

Element id The section identifier of the 
measures 

Numerical - Sediment 
measures 

Maintenance 
date 

Date of the gathering Date dd/mm/yy Sediment 
measures 



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 52 

Field Description Type UoM Data Source 

Id Identifier of the register Numerical - Node 

Street quota The street absolute quota or the 
projection of the street surface 

Numerical m Node 

Sewer quota Absolute quota of the sewer 
bottom 

Numerical m Node 

Node type Physical element of the node Categorical - Node 

code Material code Numerical - Materials 
catalogue 

Concept Material description Textual - Materials 
catalogue 

Code Register identifier Numerical - Property 
details 

Concept Property manager Textual - Property 
details 

Code Type identifier Alphanumerical - Section type 

Section size Section area Numerical dm2 Section type 

Height Section height Numerical m Section type 

Width Section width Numerical m Section type 

Bucket width Width of the bucket in the sewer Numerical m Section type 

Bucket 
depth 

Depth of the bucket in the sewer Numerical m Section type 

Contact 
width 

Width of the sewer on the street 
height. 

Numerical m Section type 

Pavement 
number 

Some zones with  Numerical - Section type 

Perimeter Perimeter of the section Numerical m Section type 

Typology Identifier of the typology used Categorical - Section type 

 

The next step is the analysis of basic metrics. A set of calculations are done to analyse the shape of the 

received data. The mean to understand the arithmetic centre of each variable, the standard deviation 

(σ) to understand the difference in value between the registers, the quantiles to understand better the 

shape of the feature distribution and finally the minimum and maximum points to indicate possible 

outliers. 
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Table 15. Statistical basic metrics – Sediment level prediction on sewage system 

Feature Count Mean σ (SD) Min Q1 Q2 Q3 Max 

Section 
size 

2452 88.33 90.77 1.7 28.8 60 131 806 

Height 2452 1.008 0.43 0.15 0.6 1 1.4 2.5 

Width 2452 0.91 0.56 0.15 0.6 0.7 1.15 4.5 

Bucket 
width 

1543 0.76 0.49 0.4 0.4 0.6 1.4 3.65 

Contact 
width 

1453 1.0 0.63 0.5 0.6 0.9 1.4 4.5 

Bucket 
depth 

2452 0.05 0.14 0 0 0 0.15 1.25 

Perimeter 2452 33.05 16.67 5 19 31 44 124 

Length 2452 17.26 12.97 0.8 7.15 13 25.7 72.6 

Velocity 2384 0.036 0.079 -0.29 0 0.015 0.071 0.32 

Water 
height 

2384 0.1 0.06 0 0.057 0.09 0.14 0.29 

Flow 2384 0.002 0.007 -0.02 0 0 0.002 0.033 

% 
Occupied 

2384 0.11 0.07 0 0.07 0.1 0.13 0.58 

Sediment 
level [cm] 

2414 4.11 5.09 -1 1 3 5 60 

 

In Table 15 some first insights can be seen. Some values of sediment level are negative (which cannot 

happen), velocity and flow also negative values, the section size feature contains a really big maximum 

value which may be related with the big perimeter value and length, and also the maximum sediment 

level is really far from the Q3, which may also be related to these high sizes. 

Graphical Univariate Analysis came afterwards. While the previous step gave us the ability to imagine 

how the distribution is with just a couple of values, this step objective is to exhaustively explore the 

different variables. 

The team has extracted valuable conclusions of these steps. First, the flow registers should always be 

positive, but the different values could be negative, as shown in the Figure 4-1. 
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Figure 4-1. Data distribution of flow levels of the different sections – Sediment level prediction on 
sewage system 

The team was able to notice a negative flow, which was then notified to the domain experts. The flow 

cannot be negative, but it indicates a direction. One of the transformations to the data model was to 

convert all the flow recordings to positive values. 

The sediment level was also analysed, and since it was our objective variable, the information extracted 

was valuable. The Figure 4-2 shows the distribution of the different sediment levels, having most of its 

values between 0 and 10, with a couple of registers being higher. 
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Figure 4-2. Data distribution of sediment level of each section– Sediment level prediction on sewage 
system 

The team noticed that the higher quantiles of the distribution were not homogeneous, for example, value 

20 and 30 had some registers, but the number of registers between these two values were too low. This 

meant the data gathering could have had problems. After checking with domain experts, it was confirmed 

that the extraction of the sediment level was done by a worker using a basic tool. 

An important part of the sediments is which type of sediments can get accumulated into the sewer. 
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Figure 4-3. Types of sedimentation – Sediment level prediction on sewage system 

The majority of sediments comes from 3 different types (see Figure 4-3), which is a domain aspect they 

are the same, accumulation of sand. Usually, the different types of sedimentation will affect each other, 

so the team is going to consider all sediment types equal for the first iteration. 

The number of sediment level gathered for each section is variable, the team needed to know which is 

the range of registers to build a data model that can represent the trend and relations between the 

sediment in the near section. The Figure 4-4 shows the shape of the variable data. 
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Figure 4-4. Number of sediment level gathered – Sediment level prediction on sewage system 

As can be seen in the Figure 4-4, most sections contain 6 registers, but there are some with only 3 and 

some others with 8. When constructing the data-driven model, the team needs to have in mind this 

difference in each section. 

After univariate analysis, the multivariate analysis comes to solve the hypothesis about the dataset and 

help understand the relation of the different variables. The team focused on identifying the main point 

during this step: to analyse which is the sediment growth (the sediment level difference between two 

registers) taking into account other possible variables. 

The first hypothesis is that sediment level is dependent of different section sizes, different slopes and 

different flows. The section size plays an important role since the sediment accumulation can change 

given different sizes. Figure 4-5 demonstrates that the section size does not impact the growth of 

sediment directly. For example, some small-sized sections have bigger or lower sediment growth, while 

the majority have neutral growth. 

 

  

Figure 4-5. Growth in centimetres of the sediment given a section size – Sediment level prediction on 
sewage system 
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The slope is represented by the mean water velocity of the residual water in a section. Let us see the 

relationship between the velocity and the sediment growth. Again, the influence of the water velocity 

over the sediment growth is not important as shown Figure 4-6. There are some sections with a lot of 

sediment growth that is nor affected by the velocity and the high velocity does not affect the sediment 

growth at all. 

 

  

Figure 4-6. Growth of sediment in centimetres given a mean velocity in a section – Sediment level 
prediction on sewage system 

 

A new hypothesis is that the passing of time affects sediment growth. A direct comparison between the 

sediment growth and the number of days since the last inspection was done in a section to validate the 

possible direct relation. Figure 4-7 shows almost no direct relationship between the time and growth 

since the growth is almost 0 in a lot of points. One important aspect is the big amount of points in the 0 

point of the x-axis. When cleaning is applied, the sediment before and after the cleaning is gathered and 

the days since the last inspection is 0 between those two registers, so they should be ignored in the 

analysis. It is important to say that maybe the growth is 0 when more than 200 days have passed because 

some raining has happened between or other events that the team does not know in this iteration. 
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Figure 4-7. Sediment growth since the days of inspection – Sediment level prediction on sewage system 

 

Finally, it is important to say that the impact of raining periods is not included in this first iteration, 

meaning in following iterations will be important to add the dry-rain periods and the intensity of rain. 

Since the data available had spatial properties, it was important to also analyse in a map view which is 

the hot points and the similarities between near points. To encounter similarities between sections, 

different metrics were analysed from a spatial perspective. 

The proportion of the section occupied by the sediment was one of the statistics to consider. The figure 

below shows the maximum proportion occupied in each section, showing some clusters with the same 

proportion and some points alone. 
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Figure 4-8. Two-dimension map of a neighbourhood in Barcelona. Maximum percentage occupied by 
sediments on each section, being red the maximum coverage – Sediment level prediction on sewage 
system 

Some sections may have a different percentage occupied but the same sediment level. The size of the 

section plays an important role, not only in this case but also when measuring the sediments, the physical 

properties affect the sediment level in a domain aspect. 

The mean proportion occupied of a section is also calculated and shown in the Figure 4-9 giving similar 

results as the maximum proportion. 
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Figure 4-9. Mean percentage occupied by sediment of each section, red being the bigger mean – 
Sediment level prediction on sewage system 

It is interesting to analyse the sediment level and see which patterns it adopts. The maximum sediment 

level is shown in the Figure 4-10. 

 

Figure 4-10. Maximum sediment level in each section, red being the bigger maximum value – Sediment 
level prediction on sewage system 

The clusters encountered before do not appear in this new calculation, but a lot of the section 

interconnected in a straight line shows the same pattern, meaning the sediment accumulation may have 

a cascade effect. To validate it the mean sediment level needs to be calculated. The Figure 4-11 shows 

it. 
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Figure 4-11. Mean sediment level in each section, red being the bigger mean – Sediment level 
prediction on sewage system 

The mean metric confirms the team hypotheses, most of the similar points are next to each other, 

showing the cascade effect. 

The final step of all the process is the correlation analysis (see Annex 1) between the different features. 

The following feature shows the relation between the features of the same section. 
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Figure 4-12. Correlation matrix between features of a section – Sediment level prediction on sewage 
system 

As can be seen, there is a high correlation between the physical properties, but low correlation between 

the sediment level and the other properties. After the data preparation, which is going to be explained 

in the following section, the team decided to identify the correlation between the different features. 

Figure 5-13 shows the correlation between the sediment level of the near sections. 
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Figure 4-13. Correlation between sediment level of near sections. X labels are 4 historical gatherings of 
the evaluated section and Y labels are 4 historical gatherings of nearby section number 5 – Sediment 
level prediction on sewage system 

The sediment level has a little bit of correlation with near sections sediment level. 

4.1.1.3. DATA PREPARATION 

Since the received data was distributed into different CSV and QGIS datafiles, a merging process was 

needed. Since the sections were separated row by row, the team decided to create a proximity function 

that calculates which are the similar sections to the one being inspected. The function considers the 

mean sediment level of the nearer sections and selects the top 5 more similar to the one being evaluated. 

Taking into account the previous analysis, the team designed a data model to be fit into a machine 

learning algorithm. The designed data model contains a set of extracted features, explained in the Table 

16. 

Table 16. Data frame used to learn – Sediment level prediction on sewage system 

Feature Description Type 

Perimeter The perimeter of the section Float 

Cubicle width Width of the sewer section cubicle Float 

Section width Width of the section Float 

Section height Height of the section Float 

Mean velocity 
Mean velocity of the residual water 
during the dry season 

Float 

Mean flow 
Mean flow of the residual water 
during the dry season 

Float 

Material The material of the section walls Categorical 

Sediment level lags 0 to 3 
Sediment level in 4 different 
timestamps 

Float 

Days between maintenances 
Days between the sediment level 
gathering 

Integer 

Cleaning applied 
Indicates if cleaning was applied 
during the maintenance session 

Boolean 
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Feature Description Type 

Size of nearer sections Size of each of the nearer sections Float 

Mean velocity of nearer sections 
Mean velocity of the residual water 
during the dry season on each of the 
sections 

Float 

Sediment level of nearer sections 
Sediment level in 4 different 
timestamps, for each of the sections 

Float 

Days between maintenances of nearer sections 
Days between sediment gathering, 
for each of the sections 

Integer 

Cleaning applied of nearer sections 
Indicates if cleaning was applied 
during the maintenance session, for 
each of the sections 

Boolean 

 

Each section contains a different number of historical sediment gatherings. The number of routines 

oscillates between 3 to 9, so the team decided to use 4 for each section, interpolating the missing one 

if the length is 3. 

The final data model contains a small size of 500 registers and 93 features. This low number of registers 

is not beneficial for the model, and the trained model could end being under fitted, not understanding 

the rules behind the dataset. When training and evaluating the models, different feature combinations 

will be used to study if a reduction in dimensionality produces better results. 

The objective variable in the model is the sediment level in timestamp 0, which is the actual sediment 

in a section. 

4.1.1.4. MODELLING & EVALUATION 

To predict sediment level in the sewage network, a batch of regressive algorithms, such as Linear 

Regression (LR), Ridge Lasso, ElasticNet, K-Neighbours Regressor (KNR) and Gradient Boosting Regressor 

(GBR), is tested and compared. The algorithms used work well with low quantity of data, so instead of 

using neural networks, which have high success with a lot of data, more traditional algorithms are going 

to be used. 

The first training iteration has been done without optimizing the hyperparameters, setting the most used 

configurations for each algorithm and using 70% of data for training and another 30% of the data for the 

testing. The results are shown in the Table 17. More detailed information about the Scoring metrics on 

Annex 2. 

Table 17. Main results of the initial modelling – Sediment level prediction on sewage system 

Algorithm MAE MSE R2 Score 

LR 2.28 14.02 0.38 

Ridge 2.3 14.18 0.37 

Lasso 2.2 13.10 0.42 

ElasticNet 2.23 13.28 0.41 

KNR 2.45 17.7 0.21 
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Algorithm MAE MSE R2 Score 

GBR 2.35 13.31 0.41 

 

The results show the models have high prediction error. The coefficient of determination (R2) is low in 

all cases, being 0.42 the highest when the best value can be 1. The minimum mean absolute error is 2.2 

and the minimum mean squared error is 13.10. Considering that the range of sediment level is mostly 

between 0 to 15, with some registers being bigger with a maximum of 30, we can see that most of our 

error is coming from the high values. Below, Figure 4-14 shows the comparison between the real and 

predicted values. 

 

 

Figure 4-14. Prediction vs Real sediment levels – Sediment level prediction on sewage system 

 

The predicted values are lower than the real values in most cases, being higher the difference if the real 

values are bigger. Table 18 shows the results after optimizing the hyperparameters of the algorithms 

that worked better: Lasso, ElasticNet and Gradient Boosting. 

 

Table 18. Main results of the initial modelling after fine-tuning the hyperparameters 

Algorithm MAE MSE R2 Score 

Lasso 2.19 13.10 0.4214 

ElasticNet 2.21 13.07 0.4228 

GradientBoosting Regressor 2.35 13.31 0.4122 
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The results after optimizing the hyperparameters got slightly better, showing improvements in the Lasso 

and ElasticNet models. Not only the hyperparameters but also the number of features used was changed. 

The best option in all cases was to use the physical properties of the predicted section and all the 

features containing historical sediment levels. 

Finally, the Lasso and ElasticNet models have similar metric values, both will perform equally. The Lasso 

model will predict better the low sediment levels while the ElasticNet model will predict better the 

bigger sediment levels, but the difference in the predictions is not big enough to decide which model is 

the best.  
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5. GOTHENBURG CASE 

 EARLY WARNING SYSTEM FOR WATER POLLUTION EVENTS ON 

CONSTRUCTION 

Construction industry is one of the major sources of pollution, responsible for around 4% of particulate 

emissions, more water pollution incidents than any other industry, and thousands of noise complaints 

every year (Gray, 2020). 

Without careful management, discharge of process water and runoff of stormwater from construction 

sites may cause significant negative impact on adjacent waterbodies, especially during wet periods. 

Typical activities which cause water pollutions at construction sites are excavation, drilling, blasting and 

ground stabilisation with cement (jet-grouting). Other day-to-day activities which involve chemicals such 

as paint, solvents, fuel and concrete also present further risks.  

The most common source of pollution on construction sites is suspended solids. When a construction site 

removes the topsoil, the remaining surface has no shield or binding element to protect it from rainfall 

and run-off. With no plants and with the surface compacted by the use of heavy machinery, the rate of 

run-off increases, and the effect is aggravated. Then, rainy conditions release and move soil particles 

that become suspended in the surface water reaching water recipients. Additionally, high pH is also a 

relevant problem on construction sites due to injection of cement during soil stabilisation activities and 

washing of concrete mixers and tools. 

Currently, practical steps are being taken on Gothenburg to minimise such silt and pH pollution by 

installation of portable and monitored treatment stations. Nevertheless, the application of pre-emptive 

techniques to anticipate the problems, that is, prepare for the unexpected can be key to face pollution 

events. In this section, the design of data-driven models to provide an early warning system for water 

pollution events on construction is addressed. 

5.1.1. ITERATION 1 

5.1.1.1. BUSINESS UNDERSTANDING 

The business objective of this study case is to minimize the impact of pollution events on construction 

sites. Currently, water quality parameters (conductivity, pH, turbidity and flow) are accessible on-line 

and real-time through a platform.  
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Figure 5-1. Platform available to access water quality parameters 

Concerning the AI goal, the aforementioned business goal can be translated to “Predict a contamination 

event in advance, taking advantage of historical and real-time water quality parameters (pH, 

conductivity and turbidity)”. 

The most relevant criteria for a successful prediction are to provide a certain level of predictive accuracy 

and anticipation. 

5.1.1.2. DATA UNDERSTANDING 

This study case only has one data source, which contains water quality parameters. Data is available 

through a platform, whose URL cannot be shared in this deliverable by security reasons. Data can be 

exported on CSV standard. Some problems appeared in the webpage when trying to retrieve large 

datasets (more than 2 months). Then, all the data were downloaded monthly and later, the data were 

integrated by using a python script. It is important to note that it is a minor problem because once the 

data is downloaded, this is no longer necessary again. Below, Table 19 summarizes it. 

 

Table 19. Details about data source acquisition - Early Warning System (EWS) for water pollution events 
on construction 

Data Source Location Method used to acquire Problems 

Water quality 
parameters  

n/a (URL cannot be 
shared) 

Download CSV through 
webpage 

The webpage is 
blocked when trying to 
retrieve large datasets 
(2 months)  

 

Additionally, a brief description of each data source is provided, including its format, its number of 

records and fields.  
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Table 20. General details about data sources - Early Warning System (EWS) for water pollution events 
on construction 

Data Source Description Format # Registers # Fields 

Water Quality 
Parameters  

Minute-by-minute information about water 
quality parameters (conductivity, flow, pH and 
turbidity), operation parameters (voltage) and 
alarms 

CSV 545701 19 

 

Table 21 enhances the collected information about the data sources, describing the fields part of the 

data sources.  

 

Table 21. General details about fields - Early Warning System (EWS) for water pollution events on 
construction 

Feature Description Type UoM Data Source 

Time  Date and time of the 
measurement 

Date YYYY-MM-dd 
HH:mm:ss 

Water Quality 
Parameters 

Conductivity Instantaneous conductivity 
measurement 

Numerical µS/cm Water Quality 
Parameters 

Conductivity 
count 

Not used Numerical n/a Water Quality 
Parameters 

Conductivity 
Alarm 

Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

pH Instantaneous pH measurement Numerical pH Water Quality 
Parameters 

pH Count Not used Numerical n/a Water Quality 
Parameters 

pH Alarm Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

Turbidity Instantaneous turbidity 
measurement 

Numerical FNU Water Quality 
Parameters 

Turbidity 
Count 

Not used Numerical n/a Water Quality 
Parameters 

Turbidity 
Alarm 

Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

Flow Instantaneous flow measurement Numerical m3/s Water Quality 
Parameters 

Flow Count Not used Numerical n/a Water Quality 
Parameters 
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Feature Description Type UoM Data Source 

Flow Alarm Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

Supply 
Voltage 

Instantaneous supply voltage 
measurement 

Numerical V Water Quality 
Parameters 

Supply 
Voltage 
Count 

Not used Numerical n/a Water Quality 
Parameters 

Supply 
Voltage 
Alarm 

Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

Total 
Volume 

Daily total volume Numerical m3 Water Quality 
Parameters 

Total 
Volume 
count 

Not used Numerical n/a Water Quality 
Parameters 

Total 
Volume 
Alarm 

Alarm based on a threshold Categorical 
(Void/”1”) 

n/a Water Quality 
Parameters 

 

Once identified the data source and their fields, an Exploratory Data Analysis (EDA) was done. Table 

Table 22 presents the analysis of statistical basis metrics. It is important to note that analysis was focused 

on Conductivity, pH, Turbidity, Turbidity Alarm and Flow fields due to these fields being strong 

candidates to be exploited during this study case.  

Conductivity feature only contained 109170 registers, five times less compared to pH and turbidity. 

Additionally, data presented a high spread (σ=114.6) and the maximum and minimum seemed out of 

range. Initially, the data quality of the conductivity feature is low and should be checked through visual 

analysis. 

pH and turbidity contained 545701 registers. pH shown a low spread, instead turbidity presented a high 

spread. The presence of outliers was expected due to the minimum and maximum values giving the 

impression of being out of range. The minimum was negative, and the maximum was very far from the 

median. 

Table 22. General details about features - Early Warning System (EWS) for water pollution events on 
construction 

Feature Count Mean σ (SD) Min Q1 Median Q3 Max 

Conductivity 109170 38.8 114.6 -617.9 0.0 4.9 76.7 1472.1 

pH 545701 7.1 2.6 -3.4 7.2 7.5 8.1 14.0 

Turbidity 545701 -11.3 61.7 -99.2 -25.1 -25.1 22.5 399.0 

Turbidity 
Alarm 

4211 1.0 0.0 1.0 1.0 1.0 1.0 1.0 

Flow 545701 0.5 2.6 -8.7 -0.04 0.0 0.0 35.1 
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Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 present a graphical univariate analysis of turbidity, flow, 

pH and conductivity measurements, respectively. Flat signal was observed for flow, pH and turbidity. 

Despite of flatlines would indicate no activity, they do not coincide in time. Additionally, outliers and 

out of range values such as negative values of flow, pH, turbidity were also observed. Conductivity did 

not present enough data to be exploited. Finally, the data quality was low for all the features, probably 

due to poor maintenance of the sensors. The major part of the data cannot be recovered by applying 

signal conditioning techniques. Nevertheless, despite of aforementioned data quality problems, the data 

sets are large enough to be split into minor data sets with a minimum of data quality. Then, these subsets 

could be used to build and assess an initial proof of concept of the data-driven model. It is important to 

note that it is strongly recommended to gather in a future turbidity and pH data with a better data 

quality. For that, discussion with the data owners will be taken to see what maintenance that is 

performed as well as how the data is used and quality assured.  

 

 

Figure 5-2. Graphical univariate analysis of turbidity - Early Warning System (EWS) for water pollution 
events on construction 

 

 

Figure 5-3. Graphical univariate analysis of flow - Early Warning System (EWS) for water pollution 
events on construction 
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Figure 5-4. Graphical univariate analysis of pH - Early Warning System (EWS) for water pollution events 
on construction 

 

 

Figure 5-5. Graphical univariate analysis of conductivity - Early Warning System (EWS) for water 
pollution events on construction 

 

Figure 5-6 presents a graphical detailed of some data quality issues identified in the datasets. The upper 

graph shows an example of flat signal (green circles) on turbidity and the lower graph shows outliers (red 

circles) and out of range data (orange circles). 
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Figure 5-6. Graphical detailed of data quality issues (top: flat signal (green circles), bottom: outliers 
(red circles) and out of range values (orange circles)) - Early Warning System (EWS) for water pollution 
events on construction 

 

Figure 5-7 presents the autocorrelation plot (see Annex 1) for the turbidity time series, that is, how the 

turbidity is correlated with a delayed copy of itself. The graph did not contain repeating patterns or 

periodic signals, hence the turbidity is not seasonal. Additionally, high correlation was observed for close 

prior measurements, demonstrating that moving average or similar techniques based on previous 

measurements could be used to detect and correct outliers.  
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Figure 5-7. Autocorrelation plot of turbidity (lag = 15 minutes) - Early Warning System (EWS) for water 
pollution events on construction 

 

Summarizing, the results of the data exploration concluded that the data quality was low due to the high 

amount of erroneous data contained in the features, including outliers, flat signal and out of range data. 

Additionally, conductivity time series only covered a few sparse data. But despite these aforementioned 

erroneous data, a large representative time series of turbidity can be extracted and enhanced to apply 

data-driven modelling. Finally, the inclusion of data from more treatment plants in the area will be 

studied in the next iteration of this deliverable. It will allow to generalize the solution despite differing 

calibrations. 

5.1.1.3. DATA PREPARATION 

During the data preparation, firstly, the turbidity time series data set were split, discarding data too 

corrupt to be pre-processed properly. The final dataset contains measurements of two months, from 20th 

August to 14th October. Having split the data, the empty and out of range (negative values) observations 

were substituted by propagating last valid observation forward, that is, the previous observation that it 

is not empty or negative. Figure 5-8 shows the result of this pre-processing. 

Moreover, a new feature to represent the state of early warning was created in the data model with the 

aim of applying supervised algorithms. This feature was based on manual labelling and took advantage 

of alarm field of the dataset, which presented real alarms based on a threshold. Therefore, previous 

time instants to the alarm were labelled like abnormality (early warning). Additionally, all the alarm 

period was labelled as an abnormality facilitating the future learning. 
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Figure 5-8. RAW and processed turbidity - Early Warning System (EWS) for water pollution events on 
construction (purple: RAW turbidity, red: processed turbidity, green: alarm) 

 

The statistical measurements of the turbidity time series varied due to these changes. Below, the results 

are presented. 

Table 23. Statistical details of pre-processed turbidity - Early Warning System (EWS) for water pollution 
events on construction 

Feature Count Mean σ (SD) Min Q1 Median Q3 Max 

Turbidity 66638 18.1 23.5 4.0 5.4 7.8 24.6 379.7 

 

Also related to improving data quality, smoothing techniques like Exponential Moving Average (EMA) were 

applied. Exponential Moving Average is a type of Moving Average (MA) that places a greater weight and 

significance on the most recent data points. It is useful to smooth the signal and minimize the impact of 

the outliers. Figure 5-9 presents the pre-processed turbidity and the result of apply EMA with three 

different smooth factors (5, 10 and 40). 
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Figure 5-9. Smoothing of turbidity signal by applying EMA - Early Warning System (EWS) for water 
pollution events on construction 

 

Figure 5-10 shows more clearly the impact of the smoothing in the turbidity. Higher smoothing factor 

minimized the impact of the new values and hence, and therefore of the possible outliers.  

 

 

Figure 5-10. Zoom in on smoothing of turbidity signal by applying EMA - Early Warning System (EWS) for 
water pollution events on construction 

Currently, alarms are triggered when turbidity increases and exceeds a threshold. The slope of the 

smoothed turbidity and the smoothed turbidity allow to characterize the behaviour of the turbidity time-

series. For example, positive slope and higher smoothed turbidity values could be linked to early warnings 

of pollution events. Then, four new features were added to the data sets based on calculating the slope 

of the smoothed turbidity for four different windows, one of 10 values, other of 25, other of 50, and 

finally one of 100. Different window sizes are useful to capture trends at different time scales. For 

example, the windows of 10 values is useful to detect fast warnings, which cannot be captured with 

larger windows due to the slight impact of new values to the slope. Instead, large windows, like a window 

of 100 values, allows to capture slow but steady growths. 
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Figure 5-11 shows the calculated slopes for smoothed turbidity.  

 

Figure 5-11. Visualization of the slopes (w=10, w=25, w=50, w=100) for smoothed turbidity- Early 
Warning System (EWS) for water pollution events on construction 

As an initial hypothesis, smoothed turbidity and the slope of smoothed turbidity for a window size of 10, 

25, 50 and 100 may be able to discriminate between warning states or normal states. Figure 5-12 presents 

a 3D view of three previously created features, which are the smoothed turbidity by applying EMA 

(smoothing factor = 40), the slope of the smoothed turbidity with a window of 10 and other slope of the 

smoothed turbidity, but in this case with a with a higher window (w=50). Moreover, each point is painted 

with green or red, depending on if it represents a condition of pre-alarm (red) or not (green). Both 

clusters, normal states, and warning state, are partially separated, demonstrating that these features 

can be useful to provide early warning. 

 

Figure 5-12. 3D view of features for class separation (red: alert and green: normal) - Early Warning 
System (EWS) for water pollution events on construction 
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Finally, the data model used to learn was defined as represented in Table 24. 

 

Table 24. Data model used to learn - Early Warning System (EWS) for water pollution events on 
construction 

Feature Description Type 

Smoothed turbidity The EMA of the turbidity in a time period Float 

Very short trend of smoothed 
turbidity 

Trend of the smoothed turbidity in the last 10 minutes Float 

Short trend of smoothed 
turbidity 

Trend of the smoothed turbidity in the last 25 minutes Float 

Medium trend of smoothed 
turbidity 

Trend of the smoothed turbidity in the last 50 minutes Float 

Large trend of smoothed 
turbidity 

Trend of the smoothed turbidity in the last 100 minutes  Float 

Abnormality Indicate if time instant is normal or abnormal. Key feature 
based on manual labelled. 

Boolean 

5.1.1.4. MODELLING & EVALUATION 

The two classes previously manually tagged, normal and abnormal state, were totally unbalanced. The 

warning state class represented only a 2.6% of the total observations discouraging the use supervised 

learning techniques. Therefore, Novelty Detection approach based on unsupervised learning techniques 

were tackled. 

 

Figure 5-13. Unbalanced tagged classes of pollution events alerts - Early Warning System (EWS) for 
water pollution events on construction 

Then novelty detection techniques allow to decide whether a new observation belongs to the same 

distribution as existing observations or should be considered as different, that is, abnormal or unusual 

observation. Then, data-driven model will be trained with normality observations in order to be able to 

detect if the new observations are abnormal, that is, are unusual for the trained set and hence are pre-

alarm events. 
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The dataset was split in two data sets, one for training and another for testing. The training dataset only 

includes normality observations and contains 17109 observations from 9th September to 30th September 

(see Figure 5-14). Instead, the test dataset includes normality and abnormal observations with a total of 

28987 observations from 20th August to 9th September (see Figure 5-15).  

 

Figure 5-14. Training data set for predict pollution events - Early Warning System (EWS) for water 
pollution events on construction 

 

Figure 5-15. Testing data set for predict pollution events - Early Warning System (EWS) for water 
pollution events on construction 

One-class Support Vector Machines (O-SVM), Isolation Forest (IF) and Local Outlier Factor (LOF) were 

compared (see Annex 1 for more detailed information about the algorithms). All algorithms were trained 

only with normal behaviour and validated with new data. The Numenta benchmark and the precision 

metrics were adopted to evaluate the predictions of the different models and more detailed information 

about this scoring metrics is on Annex 2. Below, Table 25 presents the initial results of the evaluation. 
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Table 25. Results of the O-SVM, IF and LOF evaluation 

Algorithm Numenta 
Score 

Precision 
Score 

O-SVM 0.21 0.05 

IF 0.23 0.46 

LOF 0.15 0.05 

Moreover, Figure 5-16, Figure 5-17 and Figure 5-18 compare tagged early warnings against predicted 

early warnings. 

 

 

Figure 5-16. Results of prediction based on One-Class SVM algorithm - Early Warning System (EWS) for 
water pollution events on construction 

 

 

Figure 5-17. Results of prediction based on Isolation Forest algorithm - Early Warning System (EWS) for 
water pollution events on construction 
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Figure 5-18. Results of prediction based on Local Outlier Factor algorithm - Early Warning System (EWS) 
for water pollution events on construction 

 

The best results were linked to IF algorithm, obtaining a Numenta Score of 0.23 and a Precision Score of 

0.46. The hyperparameters of IF used to learn were optimized, reaching a Numenta Score of 0.80 and 

Precision Score of 0.78. Figure 5-19 compares tagged early warnings against predicted early warnings, 

once optimized the hyperparameters. 

 

 

Figure 5-19. Results of prediction based on fine-tuned Isolation Forest algorithm - Early Warning 
System (EWS) for water pollution events on construction 

To sum up, the initial datasets had to be fractionated to take advantage of only subsets with a higher 

quality, due to this, unrepresentative dataset was used for training (1 month of normality) and only two 

anomalies were available for validation. Despite of this aforementioned issues, IF presented respectable 

results, but more efforts should be focused on obtaining more representative and high-quality datasets. 

Additionally, some outliers were identified as early warnings despite of applying signal smoothing 

techniques like EMA. Therefore, a future iteration with an initial step to remove outliers could improve 

current results.  

  



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 83 

6. GENERAL CASE 

 DATA QUALITY PREDICTION FOR FLOW PATTERNS 

Complex water networks, such as combined sewage systems, have monitoring systems to acquire, store 

and validate data from many flow meters and other sensors to achieve accurate monitoring of the whole 

network. A common problem is the lack of reliability of the flow meters (offset, drift, breakdowns), 

producing false flow data readings. These false data must also be detected and replaced by estimated 

data since flow data are used for several network water management tasks and tools. Additionally, the 

study and understating of the citizen behaviour requires flow patterns based on dry-days due to rain 

events distorting the flow patterns, masking the real citizen behaviour.  

6.1.1. ITERATION 1 

6.1.1.1. BUSINESS UNDERSTANDING 

The business objective of this study case is to facilitate the study of citizen behaviour based on flow 

patterns, providing automatic tools to classify patterns. 

Concerning the AI goal, the aforementioned business goal can be translated to “Classify automatically 

flow patterns on normality and abnormality, taking into account that abnormality is any pattern not 

representative of a dry weather day”. 

The most relevant criteria for a successful prediction provide a certain level of predictive accuracy and 

anticipation. 

6.1.1.2. DATA UNDERSTANDING 

The study case takes advantage of one of the datasets provided by the D2.1 “Testbed data and sensor 

validation” to accelerate the implementation of the data-driven model. This data set contains flow rate 

data recorded in a pumping station of a combined wastewater catchment in a suburb of Stockholm, 

Sweden.  

The data set contains three different data sources, one for combined wastewater flow rate, another for 

accumulated precipitation and the last for outdoor temperature. All the data sources are available 

through IVL SharePoint platform in the WP2 folder. No problems have been identified in accessing them. 

Table 26 summarizes this. 

Table 26. Details about data source acquisition - Data quality prediction for flow patterns 

Datasource Location Method used to acquire Problems 

Combined 
wastewater flow 
rate 

IVL Sharepoint (WP2) Download file from 
Sharepoint 

No problems identified 

Accumulated 
precipitation 

IVL Sharepoint (WP2) Download file from 
SharePoint 

No problems identified 

Outdoor 
temperature 

IVL Sharepoint (WP2) Download file from 
SharePoint 

No problems identified 
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As was commented previously, the Combined wastewater flow rate data source contains the flow rate 

data recorded in a pumping station of a combined wastewater catchment in a suburb of Stockholm. The 

information is gathered on the excel document, which contains 39261 registers and 2 fields (Time and 

Flow Rate) in a resolution of 15 minutes. Time feature corresponds to the date and time of the 

measurement on format YYYY-MM-dd HH:mm:ss and Flow Rate to the measured value of flow rate in 

m3/h. 

The outdoor temperature data source contains the temperature, gathering on TSV document where the 

data are separated by tabs. The document is structured in three features (Time and Temperature) with 

39688 registers. Similarly to Combined wastewater flow rate data source, Time feature also corresponds 

to the date and time of the measurement on format YYYY-MM-dd HH:mm:ss and Temperature feature 

corresponds to the measured value of outdoor temperature. 

The last data source, Accumulated Precipitation, contains the rainfall accumulation in an Excel file. 2436 

registers of Time and Rainfall features are stored. Time storages the date and time in format YYYY-MM-

dd HH:mm:ss when 0.2mm of rainfall is accumulated, hence the distance between registers is not stable. 

Rainfall is constant for all registers, containing the value 0.2mm. 

Table 27 and Table 28 summarize previous information. 

Table 27. General details about available data sources - Data quality prediction for flow patterns 

Data Source Description Format # Registers # Feature 

Combined 
wastewater 
flow rate 

Flow rate data recorded in a pumping station 
of a combined wastewater catchment in a 
suburb of Stockholm 

Excel 39261 3 

Outdoor 
temperature 

Temperature data recorded outdoor the 
pumping station 

TSV 39688 3 

Accumulated 
precipitation 

Instant of time when rainfall accumulation 
reaches 0.2mm 

Excel 2436 2 

 

Table 28. General details about available features - Data quality prediction for flow patterns 

Feature Description Type UoM Data Source 

Time  Date and time of the 
measurement 

Date YYYY-MM-dd 
HH:mm:ss 

Combined 
wastewater 
flowrate 

Flow rate Flow rate Numerical m3/h Combined 
wastewater 
flowrate 

Time Date and time of the 
measurement 

Date YYYY-MM-dd 
HH:mm:ss 

Outdoor 
temperature 

Temperature Outdoor temperature Numerical ºC Outdoor 
temperature 

Time Date and time when 0.2mm of 
rainfall is accumulated 

Date YYYY-MM-dd 
HH:mm:ss 

Accumulated 
precipitation 

Rainfall Rainfall accumulation (0.2mm) Numerical mm Accumulated 
precipitation 
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Once identified the data source and their features, an initial Exploratory Data Analysis (EDA) was carried 

out. Table 29 presents the statistical basis metrics of the features. Features like Time are not included 

in this analysis due to them not being numerical.The presence of outliers was expected due to the 

minimum and maximum given the impression to be out of range. Minimum was negative and maximum 

was very far from the average. 

 

Table 29. Statistical basis metrics of features - Data quality prediction for flow patterns 

Feature Count Mean σ (SD) Min Q1 Median Q3 Max 

Flow 
Rate 

39621 60.7 26.2 -8.3 43.0 60.7 74.8 378.8 

 

Figure 6-1 presents a graphical univariate analysis of flow, including the entire time series (from 

September 2018 to October 2019). Figure 6-2 and Figure 6-3 presents some identified problems on the 

data such as flat signal (red circle), outliers (green circle) and out of range values (orange circle). 

 

 

Figure 6-1. Flow rate times series - Data quality prediction for flow patterns 
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Figure 6-2. Example of flat signal and outlier on flow time series - Data quality prediction for flow 
patterns 

 

 

Figure 6-3. Example of out of range values on flow time series - Data quality prediction for flow 
patterns 

These anomalous data, such as flat signal, outliers or out of range values, was not repaired due to the 

aim of these study case is detect abnormality on the data, which could be generated by anomalous data 

or anomalous patterns (for example, rainy days). 

Figure 6-4 presents the autocorrelation plot (see Annex 1 for more conceptual information about the 

autocorrelation analysis) for flow, how the flow is correlated with a delayed copy of itself. The graph 

shows that previous measurements are highly correlated to the current and hence, they can be used to 

detect and correct outliers. Additionally, the local maximum was observed every 96 lags (24 hours) 

demonstrating that the signal was seasonal, and the pattern was repeated each day. 
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Figure 6-4. Autocorrelation plot of flow for 4 days (lag=15 minutes) - Data quality prediction for flow 
patterns 

Summarizing, the results of the data exploration concluded that the data quality is high despite some 

erroneous data. Autocorrelation analysis demonstrated the seasonality of the flow, validating an initial 

approach based on univariate analysis. Precipitation data will be exploited in further iterations to refine 

the model if necessary. 

6.1.1.3. DATA PREPARATION 

Firstly, the data were grouped into daily time series by applying windowing techniques. Figure 6-5 

presents the daily time series. The pattern is clearly visible by the overlapping of time series and from 

now on we will consider as normality. The flow is maintained stable during the night and starts to grow 

at the first hour of the morning, coinciding with people's waking hours. Later, the pattern decreases and 

remains stable during the working day, growing slightly again when citizens return home. The time series 

away from this pattern contains rain events, possible sensor failures or special events which from now 

on we will consider as an abnormality. 
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Figure 6-5. Flow data split into daily time series - Data quality prediction for flow patterns 

The pattern is more clearly visible on following scatter plot (see Figure 6-6). Additionally, this view 

allows to discriminate slightly two different patterns, which are aligned with working days and holidays. 

On holidays, there was a delayed and mild slope of the flow during the morning (see from step 25 to 40 

-from 06:15 to 10:00). 

 

Figure 6-6. Density of flow time series (yellow: workday trend, orange: holiday trend) - Data quality 
prediction for flow patterns 

The data were tagged manually by analysing and discriminating visually the time series considered normal 

from the abnormal. It was not applied automatic process due to the low amount of data and the need 

for quality tagging, which is essential to extract patterns of the data. Figure 6-7, presents the result of 

the manual tagging. Blue and green time series represents normal time series, however, blue lines are 

workday and green holidays. Instead, red lines presented abnormal daily time series, that is, time series 

with rainy events, erroneous data or special flow events. This tagging helps to understand what happened 

in the data and can be useful if supervised learning techniques are applied. 
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Figure 6-7. Manual tagging of normality and abnormality flow (blue: normality (work day), green: 
normality (holiday); red: abnormality) - Data quality prediction for flow patterns 

Taking advantage of tagging data, data distribution of flow time series was analysed for understanding 

the data and determine the creation of new features. Figure 6-8 presents the data distribution of six 

different time series, four representative time series of normality (two of workdays and two of holidays) 

and two representative time series of abnormality. Similar data distribution patterns were observed for 

normality days, varying only the density of some ranges. Instead, abnormality patterns were totally 

different from normality patterns, they presented less homogenous and large data distributions. 

Therefore, statistical measurements related to data distribution (for example, percentiles) could provide 

relevant information to discriminate between normality and abnormality patterns.  

 

 

Figure 6-8. Density plot of flow time series including normality and abnormality - Data quality 
prediction for flow patterns 

 

      Normality (workday) 

      Normality (public holiday) 

      Abnormality 
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As an initial hypothesis, percentile 10, median (percentile 50) and percentile 90 may be able to 

discriminate between normal and abnormal patterns. Therefore, these percentiles were calculated for 

each day. Figure 6-9 shows a visual validation of the hypothesis where each percentile is presented on 

one axis. Percentile 90 on axis X, percentile 50 on axis Y and percentile 10 on axis Z. The percentiles of 

normal days form a cluster, which can be separable from abnormal days. Therefore, these features could 

be initially used to discriminate the daily time series. 

 

 

Figure 6-9. 3D visualization of percentile 10, percentile 50 and percentile 90 of daily time series 
(green: normal days, red: abnormal days) - Data quality prediction for flow patterns 

Finally, the data frame used to learn was defined as represented in Table 30. 

 

Table 30. Data frame used to learn  

Feature Description Type 

Percentile 10 of Flow The percentile 10 of the flow values gathered during a day Float 

Percentile 50 of Flow The percentile 50 of the flow values gathered during a day Float 

Percentile 90 of Flow The percentile 90 of the flow values gathered during a day Float 

Abnormality Indicate if the timeseries is normal or abnormal. Key feature based 
on manual labelled. 

Boolean 
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6.1.1.4. MODELLING & EVALUATION 

Cross-validation was applied to evaluate the model and estimate how accurately is our predictive model, 

avoiding to use the same data to train and test, and hence validating against independent and yet-unseen 

data set. More specifically, the Time Series Split technique was used (see Annex 3). 

For anomaly detection, the goal is to identify all and only anomalies. Recall Score measures how well 

our algorithm identified all anomalies. Instead, Precision Score measures how well our algorithm 

identifies only anomalies. Then, Recall and Precision Score will be used to measure the performance of 

the algorithms. Nevertheless, it is important to note that Recall Score relevance is higher than Precision 

Score relevance because the priority is detecting all anomalies, allowing us some false positive. 

Table 31 presents the accuracy, precision and recall results (see Annex 2 for more detailed information 

about this scoring metrics) of applying Time Series Split cross-validation with three splits for multiple 

classification algorithms such as K-Nearest Neighbours (KNN), Decision Tree Classifier (DTC), Random 

Forest Classifier (RFC), AdaBoostClassifier, Gradient Boosting Classifier (GBC), Gaussian NB, Linear 

Discriminant Analysis (LCA) and Quadratic Discriminant Analysis (QDA). 

A high true positive rate (Recall Score) was observed for LCA, KNN and QDA (see Table 31), showing that 

these algorithms are the most efficient to detect all anomalies. LCA and KNN algorithms are not the best 

to detect only the anomalies (Precision Score), nevertheless both algorithms are candidates to be 

exploited more accurately, jointly with QDA. 

Table 31. Recall and Precision results of the initial modelling - Data quality prediction for flow patterns 

Algorithm Recall Score Precision Score 

KNN 0.62 0.71 

DTC 0.43 0.77 

RFC 0.53 0.77 

Ada-boost Classifier 0.54 0.83 

GBC 0.45 0.71 

GaussianNB 0.49 0.74 

LCA 0.67 0.74 

QDA 0.54 0.86 

 

Concerning confusion matrix of LCA, KNN and QDA, Figure 6-10 presents the final results of the cross-

validation. Therefore, these matrixes contain the accumulation of confusion matrix generated during the 

cross-validation process with Time Series Split technique. 

LCA presented better results, predicting properly 214 normal days and 39 abnormal days. Instead, 30 

days were falsely predicted as abnormal days and 20 days as normal days.  

It is important to remark that these results were affected by the different iterations of the cross-

validation, impacting in the high number of False Positive and False Negative. 
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Figure 6-10. Confusion matrix resulting from applying the LCA(upper left), KNN (upper right) and QDA 
(lower centre) - Data quality prediction for flow patterns 

 

False Positive and False Negative were analysed in order to determine how to enhance the first model 

based on percentiles. Figure 6-11 compares the data distribution of some erroneously predicted time 

series with normality. As shown in the figure, the data distribution of abnormal days is higher due to 

higher maximum flow values by rainy contribution. Additionally, accumulated flow also increases by this 

rainy contribution. But this reason, it is considered to add new features to represent the maximum, 

minimum and accumulate flow for each day. 

 

 

Figure 6-11. Density plot of False Positive and False Negative - Data quality prediction for flow patterns 
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6.1.2. ITERATION 2 

6.1.2.1. DATA PREPARATION 

The hypothesis of iteration 1, based on percentiles, was enhanced by including also maximum, minimum 

and accumulated flow. These new features were calculated for each daily time series and included in 

the dataset. Figure 6-12 presents these features.  

If we look at the time series in detail, the day 81, which is tagged as abnormal day, presents a percentile 

90 that matches with normality. Nevertheless, the new feature related to maximum flow is far from the 

expected normal values. Therefore, new features such as maximum, minimum and accumulated could 

be useful to discriminate the data sets. For example, maximum and accumulated flow to detect rainy 

events and minimum to detect erroneous data sets. 

 

 

Figure 6-12. Maximum and minimum flow, accumulated flow and percentile 90 of data distribution for 
each daily time series - Data quality prediction for flow patterns 

Figure 6-13 validates visually if the new features discriminate abnormal from normal days. Three features 

are presented in the graph, accumulated flow on axis X, maximum flow on axis Y and percentile 90 on 

axis Z. The normal days were clustered, separating them from abnormal days. Therefore, the new 

approach can improve the previous hypothesis. 
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Figure 6-13. 3D visualization of percentile 90, maximum flow and accumulated flow of daily time series 
(green: normal days, red: abnormal days) - Data quality prediction for flow patterns 

 

Finally, the data model used to learn was defined as represented in Table 32. 

 

Table 32. Data frame used to learn  

Feature Description Type 

Percentile 10 of Flow The percentile 10 of the flow values gathered during a day Float 

Percentile 50 of Flow The percentile 50 of the flow values gathered during a day Float 

Percentile 90 of Flow The percentile 90 of the flow values gathered during a day Float 

Min The minimum of the flow values gathered during a day Float 

Max The maximum of the flow values gathered during a day Float 

Accumulated The accumulated of the flow values gathered during a day Float 

Abnormality Indicate if the timeseries is normal or abnormal. Key feature based 
on manual labelled. 

Boolean 

 

6.1.2.2. MODELLING & EVALUATION 

Previous models based on LCA, KNN and QDA were evolved, including minimum, maximum and 

accumulated flow. Table 33 presents the new Recall and Precision Score for them. Figure 6-14 presents 

the confusion matrixes for the algorithms taking advantage of cross-validation. 
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Table 33. Recall and Precision results of the initial modelling - Data quality prediction for flow patterns 

Algorithm Recall Score Precision Score 

LCA 0.69 0.69 

KNN 0.47 0.33 

QDA 0.94 0.43 

 

QDA and LCA improved the results of the first iteration. Additionally, QDA presented better results than 

LCA and KNN, reaching a Recall Score 0.94 and Precision Score 0.43. Therefore, the data-driven model 

was able to predict accurately all the abnormal days. Summarizing, the LCA predicted properly 172 

normal days and 56 abnormal days. Instead, 72 days were falsely predicted as abnormal days and 3 days 

as normal days (see Figure 6-14). 

    

 

Figure 6-14. Confusion matrix resulting from applying the LCA (upper left), KNN (upper right) and QDA 
(lower centre) - Data quality prediction for flow patterns 

 

In the same way of previous iteration, False Positive and False Negative were analysed to identify new 

possible features to enhance again the data-models. 

Figure 6-15 compares False Negative with normal days (working days and public holidays). On day 327 

(green line) or 391 (brown line) were observed a normal pattern, excepting the flows from step 10 to 30 

and step 65 to 70, respectively. New features such as local minimum, maximum and accumulated may 

be useful to detect these abnormalities.  
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Figure 6-15. Flow rate from False Negative  - Data quality prediction for flow patterns 

 

The flow data distribution of each time windows is shown, one for each differential part of the day: one 

time slot from time step 0 to 30 (00:00 to 07:30) (see Figure 6-16), other from time step 30 to 70 (07:30 

to 17:30) (see Figure 6-17) and the last from time step 30 to 96 (17:30 to 00:00) (see Figure 6-18). 

Flow data distribution varies in line with the behaviour pattern of each time slot. Additionally, data 

distributions present visual differences between normality and abnormality. Therefore, local minimums, 

maximums, accumulated and percentiles may help to discern between normality and abnormality. For 

example, the data distributions related to the time series of day 327 (purple line), which is linked to 

abnormal day, are very similar to normality in the first two windows. Nevertheless, the data distribution 

of third window is totally different from normal due to its elongated (maximum value of flow). It is 

important to note that this maximum value was not representative until now, but it will be if local 

statistical measurements are applied.  
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Figure 6-16. Data distribution from 00:00 to 07:30 (window 1) - Data quality prediction for flow 
patterns 

 

Figure 6-17. Data distribution from 07:30 to 17:30 (window 2) - Data quality prediction for flow 
patterns 

 

Figure 6-18. Data distribution from 17:30 to 00:00 (window 3) - Data quality prediction for flow 
patterns 
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To sum up, statistical measurements identified on iteration 1 and iteration 2, such as percentile 10, 

percentile 50, percentile 90, minimum, maximum and accumulated, are applied to three different 

windows on iteration 3, obtaining local statistical measurements which may increase classification 

capabilities of the data-driven model. 

 

6.1.3. ITERATION 3 

6.1.3.1. DATA PREPARATION 

As it was concluded on iteration 3, the new hypothesis is based on including statistical local 

measurements as features. Therefore, percentile 10, percentile 50, percentile 90, minimum, maximum 

and accumulated were calculated for each window defined on the previous section. 

Due to a large number of features (18 features, 6 for each window), Figure 6-19 only validates visually a 

set of them. Percentile 90 of window 1 on axis X, percentile 90 of windows 3 on axis Y and percentile 90 

of windows 2 on axis Z are included in the graph. As the image shows, normal days (green points) were 

partially clustered and separated of the abnormal days (red points). Therefore, the new hypothesis is 

initially suitable and should be assessed through a model. 

 

Figure 6-19. 3D visualization of percentile 90, maximum flow and accumulated flow of daily time series 
(green: normal points, red: abnormal points) - Data quality prediction for flow patterns 

 

Finally, the data frame used to learn was defined as represented in Table 34. 
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Table 34. Data model used to learn - Data quality prediction for flow patterns 

Feature Description Type 

Percentile 10 of Flow 
on Window 1 

The percentile 10 of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Percentile 50 of Flow 
on Window 1 

The percentile 50 of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Percentile 90 of Flow 
on Window 1 

The percentile 90 of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Min on Window 1 The minimum of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Max on Window 1 The maximum of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Accumulated on 
Window 1 

The accumulated of the flow values gathered from 00:00 to 07:30 
during a day 

Float 

Percentile 10 of Flow 
on Window 2 

The percentile 10 of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Percentile 50 of Flow 
on Window 2 

The percentile 50 of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Percentile 90 of Flow 
on Window 2 

The percentile 90 of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Min on Window 2 The minimum of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Max on Window 2 The maximum of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Accumulated on 
Window 2 

The accumulated of the flow values gathered from 07:30 to 17:30 
during a day 

Float 

Percentile 10 of Flow 
on Window 3 

The percentile 10 of the flow values gathered from 17:30 to 00:00 
during a day 

Float 

Percentile 50 of Flow 
on Window 3 

The percentile 50 of the flow values gathered from 17:30 to 00:00 
during a day 

Float 

Percentile 90 of Flow 
on Window 3 

The percentile 90 of the flow values gathered from 17:30 to 00:00 
during a day 

Float 

Min on Window 3 The minimum of the flow values gathered from 17:30 to 00:00 
during a day 

Float 

Max on Window 3 The maximum of the flow values gathered from 17:30 to 00:00 
during a day 

Float 

Accumulated on 
Window 3 

The accumulated of the flow values gathered from 17:30 to 00:00 
during a day 

Float 
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Feature Description Type 

Abnormality Indicate if the timeseries is normal or abnormal. Key feature based 
on manual labelled. 

Boolean 

 

6.1.3.2. MODELLING & EVALUATION 

This third iteration was also based on LCA, KNN and QDA algorithms, including local statistical 

measurements previously identified. Table 35 presents the confusion matrixes for these algorithms taking 

advantage of cross-validation. 

 

Table 35. Recall and Precision results of the initial modelling - Data quality prediction for flow patterns 

Algorithm Recall Score Precision Score 

LCA 0.63 0.69 

KNN 0.57 0.59 

QDA 0.93 0.51 

 

QDA and KNN improved the results of the first iteration. QDA presented the best results, reaching a 

Recall Score 0.93 and Precision Score 0.51. Therefore, the data-driven model was able to predict 

accurately all the abnormal days. Summarizing, the LCA predicted properly 191 normal days and 55 

abnormal days (see Figure 6-20). Instead, 53 days were falsely predicted as abnormal days and 4 days as 

normal days.  
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Figure 6-20. Confusion matrix resulting from applying the LCA(upper left), KNN (upper right) and QDA 
(lower centre) - Data quality prediction for flow patterns 

Concerning the last iteration of the QDA cross-validation, the data-driven model reached 72 True 

Negative, 28 True Positive, 0 False Positive and 1 False Negative. Then, the results of the data-driven 

model are remarkable once it is trained with enough representative data sets.  

To sum up, data-driven model built by using QDA algorithm demonstrates encouraging results, especially 

if it is trained with a sufficiently large and representative dataset. The optimization of hyperparameters 

could improve the current results, and hence it should be taken into account to a new iteration. Finally, 

it is important to remark that the data-driven model was trained with a dataset provided by Task 2.1 

and hence, the data-driven models should be trained again to be deployed in a new location.  
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 EARLY DRIFT DETECTION 

6.2.1. GENERAL DESCRIPTION 

Sewer system monitoring using water quality sensors has become a significant step towards identifying 

issues in real-time related to possible pollution, blockages, or floods. Sensors capable of measuring water 

properties (e.g. turbidity, flow, pH, oxygen…) are used jointly with the pipes’ physical properties to 

predict the different problems. To guarantee good measurements, sensors need supervision and output 

data handling provided by different procedures which include frequency-domain filtering and statistical 

evaluations. Our first part of the study develops a Machine Learning methodology to detect possible 

anomalous data gathered by a sensor. This solution will optimize the data gathering and reduce the 

sensor monitorization cost. 

One of the most crucial obstacles is sensor drift, which is the increase or decrease of measurement error 

over time and a problem that a lot of sensors may be prone to. Each sensor has different behaviour 

before and during the drifting phase, meaning that usual threshold solutions do not offer enough accuracy 

and need a lot of checking to accomplish it. With the use of machine learning algorithms and enough 

historical drifting problems, a solution to predict the early stages of sensor drifting can be modelled, 

improving the detection of error lifetime. 

6.2.2. ITERATION 1 

6.2.2.1. BUSINNESS UNDERSTANDING 

The spectrometers gather the ultraviolet-visible spectroscopy (220 to 300 range) and calculate different 

water quality properties like the turbidity, COD, BOD, SST, oxygen, ammonium, etc… Like almost all 

sensors, when the spectrometers stay in touch with water that contains suspended solids, organic matter, 

nutrients, among others, the values gathered might become faulty. Not detecting (manually) on-time 

the drift of a sensor affects the data gathering and might create errors on sensor monitoring software. 

The business objective is to ensure the data quality by reducing the detection time of drift. 

The AI objective in this use case is to analyse which is the behaviour of the drift and create a machine 

learning model capable of detecting this anomaly.  

To detect the drift in a sensor, data of different spectrometers in different industrial plants were 

received. The next sections will go into the analysis of the data gathered and the creation of different 

data models which will be fitted into a machine learning model, to finally be evaluated.  

6.2.2.2. DATA UNDERSTANDING 

The received data is stored into two general directories, one for industrial data and the other for urban 

data. Industrial data directory contains datafiles from 16 different industries, and each industry has one 

to two months of data. Urban data directory contains 4 different sources, and each source can have 

between one to three months of data. Table 35 contains further details. 

Table 27. Details about data sources – Early Drift Detection 

Datasource Location Method used to acquire Problems 

Industry datafiles 
(16 different 
sources) 

Local directory Received by email Features with number 
format is erroneous 

Urban datafiles (4 
different sources) 

Local directory Received by email Features with number 
format is erroneous 

As it can be seen in Table 45, the number of registers for industry is almost 4 times bigger than the urban 

dataset. It indicates the first exploration and experiments should be done on industry datafiles instead. 
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Table 28. General details about available data sources – Early Drift Detection 

Data Source Description Format # 
Registers 

# Feature 

Industry 
datafiles 

Different directories (one for each industry), 
each one contains one/two months of data, 
and each day contains 350 registers 

Directory 
with 
excel 
files 

250000 30 to +200 
(depending 
on the file) 

Urban 
datafiles 

Different directories (one for each urban 
region), each one contains one to three 
months of data, and each day contains 350 
registers 

Directory 
with 
excel 
files 

84000 30 to +200 
(depending 
on the file) 

A spectrometer gathers the light spectrum with different wavelengths. Each wavelength has a specific 

domain meaning, so the behaviour differs between them slightly. Table 46 contains more details about 

the wavelengths. 

 

Table 29. General details about available features – Early Drift Detection 

Feature Description Type UoM Data Source 

Nm190 to 
750 

Different wavelengths of the 
spectrum. They go from bigger 
values to lower values, and they 
end converted into water 
property values. 

Number nm Each file in 
the directories 

 

The analysis done understands which is the behaviour of the different spectres. Figure 6-21 shows a total 

month of data gathering in a certain industry. Each line represents a measurement, including multiple 

spectrums. 
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Figure 6-21. Spectroscopy data of industrial water – Early Drift Detection 

The domain experts labelled the data in Figure 6-22 as anomalous. As can be seen, the deviation between 

each line is wide and the difference between the minimum and the maximum is also high. When a sensor 

is clean and maintained, the measurement of light absorbance is low. Then, light absorbance keeps 

increasing with the time flows due to fouling of the sensor, achieving a drift state like Figure 6-21. It is 

important to note that it affects mainly to the low spectre of light. The team has the idea of building 

this state into a data model that can be fitted into an algorithm. 

As can be seen, the low spectres have bigger values than the high spectres, but a distribution plot will 

show way better the different distributions. 

 

Figure 6-22. Distribution difference between wavelengths – Early Drift Detection 

As the spectres gets bigger, the value scale decreases, so it is important to have into account these 

values need to be standardized before training a model. 
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6.2.2.3. DATA PREPARATION 

In this iteration, the data preparation did not require further analytics on the time series data. The idea 

behind the data model was to take representative wavelengths, calculate metrics (see Table 36) that 

define the different properties in a wavelength (the shape of the data) and use them to fit a model. 

The wavelengths used ranged from 220 to 300. Some datasets contain more wavelengths than others, 

but this was the minimum gathered in all datasets and the team wanted a solution that could work on 

every dataset. The final data model was as defined in Table 36. 

Table 36. Data model used to learn - Early Drift Detection 

Feature Description Type 

Wavelength mean 
The median of the values gathered by a wavelength in a time 
period 

Float 

Wavelength quantile 
0.2 

Quantile 0.2 of the values gathered by a wavelength in a time 
period 

Float 

Wavelength quantile 
0.8 

Quantile 0.8 of the values gathered by a wavelength in a time 
period 

Float 

Slope Slope of the gathered register by all wavelengths Float 

Wavelength Median 
The median of the values gathered by a wavelength in a time 
period 

Float 

 

6.2.2.4. MODELLING & EVALUATION 

In this first iteration, the evaluation metrics used were usual, is the accuracy, precision and recall (see 

Annex 2 for more detailed information about the scoring metrics). The team did not want to include 

complex metrics since it was the first iteration and the number of observations in this data model was 

low. The models used were Stochastic Gradient Descent (SGD) classifier (with an SVM), Logistic 

Regression, Perceptron, Feed Forward Neural Network (FFNN), K-Nearest Neighbours (KNN), Extra Tree, 

AdaBoost, Random Forest and Gradient Boosting. 

To train and evaluate the models, a simple split of 70% train and 30% test was used, and for each model, 

the sets were the same. Table 37 shows the results: 

 

Table 37. Accuracy, Recall and Precision results of the initial modelling – Early drift detection 

Algorithm Accuracy Score Precision Score Recall Score 

Logistic Regression 0.4 0.2 0.25 

SGD 0.4 0.42 0.42 

Perceptron 0.4 0.2 0.5 

FFNN 0.4 0.25 0.33 

KNN 0.4 0.2 0.5 

AdaBoost 0.2 0.5 0.4 
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Algorithm Accuracy Score Precision Score Recall Score 

ExtraTree 0.42 0.42 0.4 

Random Forest 0.4 0.2 0.5 

Gradient Boosting 0.4 0.2 0.5 

 

As can be seen, the result of the predictions by the different algorithms is poor. All the metrics are low, 

so the data model provided is not good enough. The team suspects one of the main problems is the lack 

of registers after modelling the data. There are a lot of registers in the raw data, but the team uses a 

register for each industry, meaning only 17 registers remain. 

The next iteration will show how the team built a completely different data model, but one of the future 

aims is to work more on the data model for this iteration, trying to improve the idea. 

6.2.3. ITERATION 2 

6.2.3.1. DATA UNDERSTANDING 

After iteration 1, where all wavelengths were used, the team wanted to predict drift only using one 

wavelength that could provide impact to the model decisions. In a domain aspect, the higher wavelengths 

offer more statistical explainability when trying to detect drift, Figure 6-21 shows a bigger variability in 

lower wavelengths than in higher ones. 

The first step was to identify the different drift zones and prepare a data model considering the 

differential properties of the time series. The Figure 6-23 shows an example of high drift, where the 

values get high between the register 11000 to the register 21000, where cleaning is applied at register 

14000 but the value increases again at 15500. 

 

 

Figure 6-23. Wavelengths 290 and 300, drift example over a long time – Early Drift Detection 
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The shown contextual anomaly happens in some parts of all the industrial data gathered. Each anomaly 

is labelled since the beginning of drift appearance until the maintenance is done. After labelling, the 

team decided to compare the distribution of normal behaviour and anomalous behaviour, shown in the 

Figure 6-24. 

 

 

Figure 6-24. Data distribution of drift and normal behaviour – Early Drift Detection 

 

The anomaly windows have higher values than the normal context. The plot shown is an extremist case 

and we need to consider that the beginning of drift is difficult to detect but having this dispersion is 

important. 

6.2.3.2. DATA PREPARATION 

The design of the data model was not complex. Since the difference between distributions could be seen 

using the naked eye, the features used should represent the shape of it. The Table 38 shows the features 

extracted from a rolling window in the time-series data. 

Table 38. Data model used to learn - Early Drift Detection 

Feature Description Type 

Wavelength mean 
The median of the values gathered by a wavelength in a time 
period of 30 points 

Float 

Wavelength quantile 
0.2 

Quantile 0.2 of the values gathered by a wavelength in a time 
period of 30 points 

Float 

Wavelength quantile 
0.8 

Quantile 0.8 of the values gathered by a wavelength in a time 
period of 30 points 

Float 

Wavelength minimum Minimum value in a time period of 30 points Float 

Wavelength Median 
The median of the values gathered by a wavelength in a time 
period of 30 points 

Float 
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The objective variable for the data model was if the time window was drifted or not, being boolean. The 

final size of the data model is 200000 rows and 180 columns.  

6.2.3.3. MODELLING & EVALUATION 

The problem at hand suggested the creation of a model that could detect drift in real-time, so the metric 

used to evaluate the model is going to be the Numenta Anomaly Benchmark (NAB) (see Annex 3).  

As in other iterations and use cases, the selection of the best model involves testing different algorithms 

and different hyper parameters, then select the best one. On the Table 39, a set of models tested is 

shown with metric result for NAB with a 0.5 balance and precision apart. 

 

Table 39. Numenta and Precision Score of the model – Early drift detection 

Algorithm Numenta Score Precision Score 

SDG 0.92 0.97 

Logistic Regression 0.89 0.92 

Perceptron 0.90 0.93 

FFNN 0.98 0.97 

KNN 0.97 0.95 

ExtraTree 0.94 0.71 

AdaBoost 0.97 0.95 

RandomForest 0.97 0.89 

GradientBoosting 0.95 0.87 

 

The results achieved by all the algorithms tested are high, meaning the data model is good. Of all 

algorithms tested, feed forward neural networks work the best and have not only good NAB score, by the 

balance between precision and the primitive NAB score is balanced.  
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Figure 6-4. Comparison between predictions and reality 

 

Figure 8-4 shows the comparison between the predictions done by a FFNN and the real data. As it can be 

seen, for most cases the anomaly is predicted early on and the number of false positives is low, only 

around register number 22000.  

Future work needs to include residual water in an urban environment and not from industrial 

environment. This study can lead to fast iterations when the urban data is received in the future. 
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 GENERIC ANOMALY DETECTION 

Water sensors suffer from a wide range of anomalies when gathering data as drift, high noise or instant 

increase/decrease in the gathering. As drift was one of the crucial points to be detected, it is also 

important to detect other anomalies. The team studied supervised and unsupervised approaches in two 

iterations to detect irregularities in the data as an early warning solution. 

6.3.1. ITERATION 1 

6.3.1.1. BUSINESS UNDERSTANDING 

The first iteration has the AI objective of detecting water quality pattern anomalies in real-time by using 

supervised models. This will improve the water monitoring, resource management and will reduce the 

risk error of a business. The Figure 6-25 shows some of the most important anomalies, being an increase 

of value that has not been detected. 

 

Figure 6-25. Labelling of some of the anomalies to detect – Generic anomaly detection 

To solve the business objective, the work with univariate detection is going to be prioritized, so the 

detection of anomalies can be done without having other sensors. 

6.3.1.2. DATA UNDERSTANDING 

The received dataset contains data gathered by a spectrometer in a WWTP, converted into water quality 

values. Table 40 shows more details about the gathered data file. 

Table 40. Details about data sources – Generic anomaly detection 

Datasource Location Method used to acquire Problems 

Anomaly examples Local directory Received by email Contains only two 
months of data 

Table 41 explains it has two months of data with a size of 125000 registers, each register gathered in a 

2-minute frequency, and 6 features. 
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Table 41. General details about available data sources – Generic anomaly detection 

Data Source Description Format # 
Registers 

# Feature 

Anomaly 
examples 

Contains different time series, for different 
water quality elements   

Excel file 125000 6 

The data set contains 6 different water quality elements gathered. Table 42 contains further details on 

each feature and unit of measure. 

Table 42. General details about available features– Generic anomaly detection 

Feature Description Type UoM Data Source 

COD The chemical oxygen demand, an 
indicative measure of the amount 
of oxygen that can be consumed 
by reactions in a measured 
solution. 

Number mg/l Anomaly 
examples 

BOD The biochemical oxygen demand 
is the amount of dissolved oxygen 
needed by aerobic biological 
organisms to break down organic 
material present in each water 
sample at certain temperature 
over a specific time period. 

Number mg/l Anomaly 
examples 

TSS Total suspended solids are the 
dry-weight of suspended particles 
that are not dissolved in a sample 
of water. 

Number mg/l Anomaly 
examples 

Temperature The temperature of the water 
sample. 

Number Centigrade Anomaly 
examples 

NH4-N The ammonium concentration in 
the water sample. 

Number mg/l Anomaly 
examples 

pH A measure of how 
acidic/basic water is, ranging 
between 0 to 14 and 7 being the 
neutral case. 

Number - Anomaly 
examples 

 

To explore the data, a set of steps have been done to understand the meaning of the values and the 

relationship between time-series. First, the dataset contains 6 variables which are of float type, each 

one having a specific behaviour that needs to be studied, so the first step is to calculate and plot the 

autocorrelation of each variable. 

The COD autocorrelation plot (see Figure 6-26 and Annex 1 for more detailed information about 

autocorrelation concept) shows high correlation the first lag points, with a decreasing correlation. 

Around the lag 100, 200 minutes, the autocorrelation is low, meaning each value can be represented by 

the past 200 minutes. 
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Figure 6-26. COD autocorrelation – Generic anomaly detection 

The BOD autocorrelation shows different behaviour (see Figure 6-27). The correlation on the early lags 

is the same as the COD autocorrelation, but the latest lags have a bigger increase describing a daily 

seasonality of the BOD values. 

 

Figure 6-27. BOD autocorrelation – Generic anomaly detection 

TSS autocorrelation shows high correlation on early lags with a decrease until lag 80, where the lags are 

not meaningful enough (see Figure 6-28) 
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Figure 6-28. TSS autocorrelation – Generic anomaly detection 

NH4-N presents a uniform decreasing autocorrelation in all lags, being a meaningful correlation until 200 

lags (see Figure 6-29). 

 

Figure 6-29. NH4-N autocorrelation – Generic anomaly detection 

pH autocorrelation plot (see Figure 6-30) shows how correlated the pH is between the past lags. The 

correlation is so big that the decrease is not hard. 
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Figure 6-30. pH autocorrelation – Generic anomaly detection 

 

After knowing, which is the autocorrelation for all the variables, the correlation between them is 

analysed in Figure 6-31. 
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Figure 6-31. Correlation matrix – Generic anomaly detection 

 

The matrix shows a high correlation between the COD-BOD-TSS while there is a low correlation with the 

other values, except the correlation between the temperature and NH4-N and temperature and pH. 

To end with the first data exploration, the time series were decomposed, and the vital parts of the time 

series were evaluated. The Figure 6-32 shows how once seasonality is removed, the trend is high in some 

subsets of the time series. Additionally, the residual subplot shows parts in the time series with high 

noise. 
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Figure 6-32. Decomposition of COD – Generic anomaly detection 

 

Finally, before starting the data preparation and design of the data model, a univariate distribution was 

done. The Figure 6-33 shows 4 different distributions, one contains normal behaviour and the other three 

are anomaly behaviour. It can be seen how two of the anomalies have a bigger window, but another one 

is near the normal behaviour. Despite of similar pattern, statistical distribution measurements, like Q1, 

median, Q3, differs totally. 
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Figure 6-33. Distribution comparison between anomalies and normal behaviour – Generic anomaly 
detection 

6.3.1.3. DATA PREPARATION 

As specified before, the data-modelling should work on the larger number of sensors possible and in real-

time. The metrics used to differentiate anomalous and normal behaviour are extracted from a sample 

window of the total time-series, which size is decided based on the past analysis. Each register will 

contain the different metrics, and each one will contain a sample between the register timestamp and 

the past hours. In Figure 6-33, the anomalous distributions contain higher variance, mean, and quantile 

values, so ensuring correct estimations is crucial. Table 37 explains the features of the designed data 

model. 

 

Table 43. Data model used to learn – Generic anomaly detection 

Feature Description Type 

Mean Mean of the past 30 registers in a certain point of 
time. 

Float 

Variance Variance of the past 300 registers in a certain 
point of time. 

Float 

Trend Trend of the past 100 registers in a certain point 
of time. 

Float 

Mean lags, 1 to 9 After calculating the mean feature, each register 
contains the past 9 “mean feature”. 

Float 

Variance lags, 1 to 9 After calculating the variance feature, each 
register contains the past 9 “variance feature”. 

Float 

Trend lags, 1 to 9 After calculating the trend feature, each register 
contains the past 9 “trend feature”. 

Float 
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6.3.1.4. MODELLING & EVALUATION 

The modelling and evaluation phase consists of testing a batch of algorithms and evaluate them using 

NAB. During this iteration, the team used the time series cross-validation technique to secure the 

algorithms being tested have consistency and can generalize well. Out of all the algorithms, Adaboost 

had the best result with 0.78 NAB (with a 0.5 precision weight). Using a 0.75 precision weight in the NAB 

metric (which rewards the early prediction of anomalies) and a Grid Search to optimize hyper-

parameters, Adaboost achieved 0.75 NAB. The Figure 6-34 shows the different iterations of the grid 

search. 

 

Figure 6-34. Grid search cross validation of the Ada Boost optimization – Generic anomaly detection 

To know visually which points are detected by the algorithm, a plot was created showing which points 

of the time series were predicted as an anomaly, shown in Figure 6-35. To compare, Figure 6-25 contains 

the labelling of different anomalies, and the ones being shown in Figure 6-35 are the first anomalies in 

Figure 6-25. 
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Figure 6-35. Points detected by the algorithm – Generic anomaly detection 

Most of the predictions were done early in the anomalies and the false positives are not far from the 

anomaly or are just after the anomaly correction. The team concludes on having a good model that can 

predict this type of anomalies. 

Finally, to know the importance of each variable, the team plotted the weight of the features of the 

model and extract conclusions. 

 

Figure 6-36. Feature importance of the Ada Boost algorithm – Generic anomaly detection 

The main thing extracted from the plot is that the bigger lags have more importance than the lowers, 

but the point at the moment also has a lot of importance. In future iterations, the lag frequency should 

be increased and try if the models work better. 
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6.3.2. ITERATION 2 

6.3.2.1. DATA PREPARATION 

The past iteration built a model that predicted high-increase anomalies. While it solves detecting the 

most critical anomalies, it does not consider high noise or really low deviation problems. The Figure 6-37 

shows normal behaviour, the anomalies predicted in the past iteration (in red) and other types of 

anomalies in yellow (which were not predicted before). 

 

Figure 6-37. Previously detected anomalies, non-detected anomalies and normal behaviour – Generic 
anomaly detection 

The objective in this iteration is to get a model able to detect all the anomalies shown and to detect 

future anomalies not studied until now. 

The anomalous registers in the data are only a subset of the total possible population, meaning that we 

should build a model that considers any anomaly, even the classes that we do not know. To solve the 

problem, we need algorithms that learn from normal behaviour and are capable of classifying if the 

incoming registers differ and therefore are anomalous. One-class classification (OCC) techniques predict 

if an instance pertains to a specific class or not, by primarily learning from a training set containing only 

registers of that class, although some variants use counterexamples to better define the classification 

boundary. 

In this iteration, the data model used is the same as the past iteration, since the model also includes the 

variance, which is a crucial point to detect noise problems. Nevertheless, a change of paradigm is 

applied, from supervised to unsupervised learning, which is going to affect to the predictions obtaining 

different results. 
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6.3.2.2. MODELLING & EVALUATION 

In this section, One-class Support Vector Machines (O-SVM), Local Outlier Factor (LOF) and Isolation 

Forest (IF) will be prepared and compared. These algorithms are unsupervised, they learn from normal 

data containing some anomalous observations called "contamination" and will predict if a register is 

normal or not. 

The dataset used contains 50% of normal data, 14% of anomalous data and 36% of normal data with a 

little bit of noise. As Local Outlier Factor only needs normal behaviour to learn, the data has been split 

in 60% of normal data to train and 40% of the remaining to evaluate. One-class SVM and Isolation Forest 

need contamination in the dataset to learn and establish a better margin, so they have been trained 

using 70% of the total data and evaluated using the remaining 30%. 

As explained in the previous section, the Numenta Score and the Precision Score are adopted to evaluate 

the predictions of the different models. Below, Table 44 is introduced to show the results of the 

evaluation of models with different parameters, using the Numenta Score with a 0.5 false positives rate 

parameter and the Precision Score. 

Table 44. Results of the O-SVM, IF and LOF evaluation – Generic anomaly detection 

Algorithm Contamination neighbours Numenta Score Precision Score 

O-SVM 0.05 n/a 0.79 0.61 

O-SVM 0.04 n/a 0.80 0.63 

IF 0.03 n/a 0.79 0.62 

IF 0.05 n/a 0.78  0.60 

IF 0.04 n/a 0.79  0.62 

IF 0.03 n/a 0.76  0.61 

LOF 0 150 0.78 0.57 

LOF 0 80 0.77 0.56 

 

Different contamination values have been assessed for each algorithm (for Local Outlier Factor the 

contamination needed to be 0, but a different number of neighbours have been tried). The best 

combination has been the use of O-SVM with 0.04 contamination, obtaining a Numenta Score of 0.8 and 

a Precision Score of 0.63. IF shows good results with a 0.04 contamination, and finally, LOF shows the 

worst values of all. 

Figure 9-14 shows the predictions done by the model based on O-SVM. As it can be seen, all the anomalies 

previously labelled are correctly predicted, the zones with more noise are also detected, but there are 

some points predicted as anomalous when their behaviour is good. This last sort of predictions are the 

false positives and the reason of having a low precision score in each algorithm. 



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 122 

  

Figure 6-14. Points detected by the algorithms – Generic anomaly detection 
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7. CONCLUSIONS AND FUTURE WORK 

The work done during this first year include all sorts of Machine Learning techniques, such as sensor 

simulation, outlier detection, spatial predictions, data quality evaluation, drift detection and anomaly 

detection. 

The use case for the city of Amersfoort introduces the idea of an early warning system to detect flash 

flood using a short-time prediction on a 2-hour horizon value and a heat risk prediction. The studied case 

for flash flood makes an introduction to future implementation of the Machine Learning model using 

historical prevision data, and the heat risk prediction introduces the first iteration on the data model 

used and the training/evaluation of the model created. 

In this use case, the temperature time series are validated automatically by a novel Machine Learning 

algorithm to work with the data model containing some null values. The algorithm Histogram-based 

Gradient Boosting Classifier shows some initial results on the temperature validation, but it will be 

improved in the future. Also, it is planned to improve the data model, adding spatial features, and 

improving the quality of the registers. 

The Barcelona use case introduces the idea of predicting sediment in the sewer grid using spatial 

prediction, considering not only physical properties of the section but also properties of the nearby sewer 

sections and sediments to predict the objective sediment. The number of resources that could be saved 

with a good model would improve economically and socially the city council and the citizens, but the 

problem is difficult to solve because the number of registers is low, and the models are not able to learn 

the relations between the features. More data is expected in the future to obtain more registers and 

improve the models. Additionally, new strategies will be faced, like the prediction of future sediment 

level in a section using the trend of the past values, with the aim of improving current results. 

A solution to predict anomalies in the water from construction sites is introduced for the Gothenburg use 

case, training unsupervised learning algorithms with water quality data. The algorithm Isolation Forest 

presented good results, but only one month of normality was used and in the final data model only two 

anomalies were available to evaluate the model. Despite this data problem, the model results are good 

enough to plan future iterations were the quality of the registers will be improved and more data will be 

added to improve the model. 

Additionally, two generic models are introduced which can be used for solving urban water problems, 

the univariate detection of anomalous data on quality sensors and incremental drift detection using 

univariate data. 

The unsupervised anomaly detection solution for water quality sensors can detect different type of 

abnormalities in the data with a good score, with a counterpart of detecting some false positives. One-

class Support Vector Machine is the most reliable algorithm between some state-of-the-art anomaly 

detection algorithms tested, being an opening step to continue studying novelty detection algorithms in 

the future. In this study, there is a lack of deep learning algorithms, which have not been tested because 

the volume of data gathered is not significant. In the future, more data will be added, and the team will 

experiment with deep learning algorithms such as Deep Belief Networks or hybrid solutions between 

auto-encoders and O-SVM. Another improvement will be the addition and testing of more sensors and 

different types of anomalies to improve the validity of the models. 

The drift detection model can predict dangerous drift in real-time on ammonium and turbidity sensors. 

The study compares a batch of classification algorithms, from linear predictions to ensembles and neural 

networks, using the Numenta Anomaly Benchmark, which is a novel benchmark to evaluate real-time 

anomaly detection models. The empirical results highlight the feedforward neural network as the best 

model, obtaining high NAB and precision. Knowing the good results provided by a simple architecture, 

one of the future actions is to study different neural networks. As explained, these models were tested 

using data from two different sensors, so it's a must to add new sensors in the future and secure the 

generalization of the models. 

Finally, it is important to note that a new version of this document will be presented on M36 (D2.5), 

enhancing current accuracy of data-driven models, and adding new ones.  



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 124 

8. REFERENCES 

Altman, N. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. 

Am. Stat., 46(3), 175-185. 

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. 

Chapman and Hall/CRC. 

Breunig, M., Kriegel, H., Ng, R., & Sander, J. (2000). LOF: identifying density-based local outliers. 

ACM sigmod record, 29(2), 93-104. 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. 

Das, S., Fern, A., Dietterich, T., Emmott, A., & Wong, W. (2016). Anomaly Detection Meta-Analysis 

Benchmarks. 

Domingues, R., Filippone, M., Michiardi, P., & Zouaoui, J. (2018). A comparative evaluation of 

outlier detection algorithms: Experiments and analyses. Pattern Recognit., 74, 406-421. 

Gray, J. (19 de 02 de 2020). Sustainable Build. Obtenido de http://www.sustainablebuild.co.uk/ 

Ho, T. (1995). Random Decission Forests. Proceedings of 3rd international conference on 

document analysis and recognition, 1, 278-282. 

Kriegel, H., & Zimek, A. (2008). Angle-based outlier detection in high-dimensional data. 

Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery 

and data mining, 442-452. 

Lavin, A., & Ahmad, S. (2015 ). Evaluating Real-Time Anomaly Detection Algorithms -- The 

Numenta Anomaly Benchmark. IEEE 14th International Conference on Machine Learning 

and Applications (ICMLA), 38-44. 

Liu, F., Ting, K., & Zhou, Z. (2008). Isolation forest. Eighth IEEE International Conference on Data 

Mining, 413-422. 

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automation. Cornell 

Aeronautical Laboratory. 

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support vector 

method for novelty detection. Advances in neural information processing systems, 582-

588. 

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining. 

Proceedings of the 4th international conference on the practical applications of 

knowledge discovery and data mining, 29-39. 

 

  



D2.4 1st version of data-driven models report for a water-smart society, v 1, 28 July 2020  

 
 

p. 125 

ANNEX 1 – DATASCIENCE AND MACHINE 

LEARNING CONCEPTS 

Autocorrelation 

An autocorrelation plot has in the y-axis the correlation value (usually the Pearson correlation) and the 

lag in the x-axis. A lag means a past point, so if a point is gathered each minute, a lag of 1 means a point 

one minute ago, and a lag of 10 means the points 10 minutes ago. 

 

Cross Correlation 

Cross-correlation measures the similarity between a vector x and shifted (lagged) copies of a vector y as 

a function of the lag. 

 

Supervised Algorithms 

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an 

algorithm to learn the mapping function from the input to the output, that is, Y = f(X). The goal is to 

approximate the mapping function so well that when you have new input data (x) that you can predict 

the output variables (Y) for that data.  

Below, more common supervised algorithms are introduced: 

The Support Vector Machine (SVM) (Cortes & Vapnik, 1995)  algorithm focuses on finding a hyperplane 

that divides the n-dimensional space defined by input data into two regions, maximizing its distance or 

margin (see Figure 8-1). Depending on the chosen kernel, the method allows both linear and non-linear 

classification, thanks to the mapping of entries to a larger space, where the separation hyperplane can 

be found in a simpler way. 

 

Figure 8-1 Rationale behind the Support Vector Machine 
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The K-Nearest Neighbours (KNN) (Altman, 1992) is based on the premise that the prediction or 

classification of an unknown instance can be accomplished through the relationship with known 

instances, weighted by a metric or distance. Typically, the Euclidean distance is used as a measure of 

similarity, but other distances can be implemented and used to better adjust the operation of the 

algorithm and the type of data. Figure 8-2 illustrates the rationale of the KNN algorithm: it finds the k 

neighbours closer to the new sample to determine its class. 

 

Figure 8-2. Rationale behind the K-Nearest Neighbours 

The Decision Tree (DT) (Breiman, Friedman, Olshen, & Stone, 1984) is a popular tool in machine learning 

that that makes divisions in the data set ensuring the maximum number of data in the same category or 

tag within each division. In the example of Figure 8-3, during the training of the decision tree 4 divisions, 

also called “leaves”, have been created. Against new data from x1 and x2, the DT would be able to 

determine the class following the reasoning shown in Figure 8-4.  

 

Figure 8-3. Divisions (leaves) created by the Decision Tree 

 

 

Figure 8-4. Decision Tree created for the example shown in Figure 8-3 
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The Random Forest Tree (RFT) (Ho, 1995) is an ensemble algorithm which is built on a multitude of 

decision trees during the training of the model (see Figure 8-5). The principle in which the "ensembles" 

are based is the following: a set of "bad" predictors can together become a good predictor. In the case 

of the Random Forest Tree, "bad predictors" are in fact decision trees, while the good predictor is the 

set of random trees. Each tree of the set makes a prediction and the most voted by the set of trees is 

the winning prediction. The RFT can also provide additional information, such as the identification of 

the most relevant variables in the process. 

 

Figure 8-5. Rationale behind the Random Forest Tree 

 

The Artificial Neural Network (ANN) (Rosenblatt, 1957) is one of the main tools used in machine 

learning, which intends to replicate the human brain learning process. Neural networks consist of input 

and output layers, as well as hidden layers that transform the inputs into something that the output layer 

can use. They are excellent tools for finding patterns which are far too complex or numerous for a human 

programmer to extract and teach the machine to recognize. During the training of the ANN, the 

backpropagation technique allows the ANN to adjust its parameters in order to improve the predictive 

performance of the model. 

 

Figure 8-6. Artificial Neural Network example 

Unsupervised Algorithms 

Unsupervised learning is where you only have input data (X) and no corresponding output variables. The 

goal for unsupervised learning is to model the underlying structure or distribution in the data in order to 

learn more about the data. Algorithms are left to their own devises to discover and present the 

interesting structure in the data. 

Unsupervised learning problems can be further grouped into clustering and association problems. 

X = input 

f1 f2 f3 

y = output 
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• Clustering: A clustering problem is where you want to discover the inherent groupings in the 

data, such as grouping customers by purchasing behaviour. 

• Association:  An association rule learning problem is where you want to discover rules that 

describe large portions of your data, such as people that buy X also tend to buy Y. 

Some popular algorithms of unsupervised learning focused on Novelty Detection, where training data is 

not polluted by outliers and we are interested in detecting whether a new observation is an outlier, are: 

One-class SVM (Schölkopf, Williamson, Smola, Shawe-Taylor, & Platt, 2000)is a domain-based method 

which relies on the construction of a boundary separating the nominal data from the rest of the input 

space by applying the support vector machine algorithm to one-class problems. The method computes a 

separating hyperplane by maximizing the margin between the input data and the origin in the high-

dimensional space. The algorithm allows a percentage of data points to fall outside the boundary in order 

to prevent over-fitting from happening. This percentage acts as a regularization parameter. 

 

Figure 8-7 One-Class SVM Classifier 

 

Local outlier factor (LOF) (Breunig, Kriegel, Ng, & Sander, 2000)  is a well-known distance based 

approach that studies the neighbourhood of each data point to identify outliers. For a given data point, 

this algorithm computes its degree of being an outlier based on the Euclidean distance between the data 

point and its closest neighbour. A recent study (Das, Fern, Dietterich, Emmott, & Wong, 2016) shows 

that LOF outperforms Angle-Based Outlier Detection (Kriegel & Zimek, 2008) and One-class SVM when 

applied on real-world datasets for outlier detection. 

 

Figure 8-8. Local Outlier Factor: each point is compared with its local neighbours instead of the global 
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Isolation forest (Liu, Ting, & Zhou, 2008) is a method that focuses on isolating anomalies instead of 

profiling normal points (see Figure 8-9). It uses random forests to compute an isolation score for each 

data point. Recursive random splits are performed on attribute values, hence generating trees able to 

isolate any data point from the rest of the data. (Domingues, Filippone, Michiardi, & Zouaoui, 2018) 

showed that this was the most performing outlier detection method for the real-world datasets of their 

study. 

 

Figure 8-9. Identifying outliers with Isolation Forest 
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ANNEX 2 – SCORING METRICS 

Regression Scoring Metrics 

MAE 

Mean absolute error: The arithmetic average of the absolute difference between the predictions 

and the real values. 

MSE 

Mean squared error: The arithmetic average of the squared difference between the predictions 

and the real values. 

R2 

Coefficient of determination (R2): The proportion of the variance in the objective variable that 

is predictable from the predictive variables (input vector). 

 

Classification Scoring Metrics 

Precision 

Precision, also named Positive Prediction Value (PPV), measures how well our algorithm 

identified only instances of one class, for example anomalies. 

Precision = TP / (TP + FP), where TP = True Positive and FP = False Positive. 

Recall 

 Recall, also named True Positive Rate (TPR), measures how well our algorithm identified all 

instances of one class, for example anomalies. 

Recall = TP / (TP + FN), where TP = True Positive and FN = False Negative 

Accuracy 

 Accuracy measures the ratio of number of correct predictions to the total number of input 

samples. 

Accuracy = (TP + TN) / (TP + TN + FP + FN), where  TP = True Positive  

TN = True Negative 

FP = False Positive 

FN = False Negative 

Numenta Anomaly Benchmark 

The Numenta Anomaly Benchmark (Lavin & Ahmad, 2015 ) uses a set of weights, a scaled sigmoidal 

scoring function, and an evaluation of false positives and false negatives to score a set of anomaly 

prediction having into account a set of requirements: 

i. Detects all anomalies present in the streaming data. 

ii. Detects anomalies as soon as possible, ideally before the anomaly becomes visible to a human. 

iii. Trigger no false alarms (no false positives). 

iv. The algorithm can be used in real-time environments. 
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Code 1 presents the body structure of the scoring function. The algorithm needs three inputs: a weight 

to punish the prediction of false positives, an ordered list of the true values and another ordered list of 

the predicted values. Step 1 evaluates each point predicted by the algorithm using code 2 and stores the 

score in the variable SA. Step 2 calculates a perfect score, using the true values as predicted values, and 

Step 3 calculates a null score using the true values and a list without anomalies predicted. After obtaining 

the three scores, the precision and SNAB scores are computed in steps 4 and 5. Finally, the SNAB and 

precision scores get multiplied by the punishing weight and added up. 

Code 1 Scorer structure 

Input: Two sets of real points and predicted points of the same length, true and pred; 

a balance of true and false positives X between [0, 1] 

Output: Score between [0, 1] 

1: SA <- Evaluate each pred point and sum the scores 

2: SAperfect <- Calculate a perfect score 

3: SAnull <- Calculate a score without anomalies predicted 

4: SNAB <- (SA - SAnull) / (SAperfect - SAnull) 

5: precision <- TP/(TP+FP) 

6: return X * SNAB + X * precision 

Code 2 shows the procedures to calculate a score given two lists. The first one is used as the correct 

data and the second as the data to be evaluated. The procedure is divided into two big steps; the 

identification of anomaly ranges (steps 1 to 10) and the point evaluation of the test set (steps 11 to 21).  

Step 1 defines a set of anomaly ranges that will be used to assert each point of the test set. Steps 3 to 4 

compute and append the start position of the ranges while steps 6 to 8 append the end position. Steps 

11 and 12 define the set of computed scores for each anomalous point and punishing values for 

undetected ranges. Step 15 appends anomalous point scores computed by Code 3 to the set of tanh 

scores, while step 18 computes the punishing values. Finally, the sum of the positive scores is done and 

the punishing score is applied. 

Code 2 Score calculator 

Input: Two sets of points of the same length, one as a correct set and the other as a 

set to evaluate 

Output: Score value 

 1: Default initialization of anomaly_positions 

 2: for i = 0 to n_correct_values do 

 3:   if i is the start of an anomaly range do 

 4:     start_position <- i 

 5:   end if 

 6:   if i is the end of an anomaly range do 

 7:     end_position <- i 

 8:     anomaly_positions <- append [start_position, end_position] 

 9:   end if 

10: end for 

11: Initialize tanh_scores 

12: Initialize fd 

13: for i = 0 to n_evaluate_values do 

14:   if i is in anomaly_positions do 

15:     tanh_scores <- append point score of i 

16:   end if 

17:   if anomaly_position has not been predicted do 

18:     fd <- append false negative punishment 

19:   end if 

20: end for 

21: return sum(tanh_scores) – sum(fd) 

To evaluate each anomalous point, the Numenta Anomaly Benchmark uses a scaled sigmoidal scoring 

function, where the predictions made sooner are rewarded positively. In code 3, an alteration of the 

function is shown, where the weight of the false positives has no impact on the evaluation, using a tanh 

function to estimate the point score. The team decided to evaluate the false positives using the precision 

metric to punish the false alarms a bit more. 
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Code 3 Tanh  

Input: Relative position in the anomaly range y, between 0 and 1 

Output: Score between (-1, 1) 

1: return 2 * (1 / (1 + e^(5*y))) - 1 
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ANNEX 3 – CROSS-VALIDATION BASED ON 

TIME SERIES SPLIT 

Time Series Split is a variation of k-fold, returning first k folds as train set and (k+1) th fold as test set. 

It is important to remark that unlike standard cross-validation methods, successive training sets are 

supersets of those that come before them.  

 

Figure 8-10. Example of Time-Series Split technique (source: scikit-learn.org) 
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ANNEX 4 – STOCKTAKING 

A final Annex of stocktaking was included in all Deliverables of SCOREwater produced after the first half-

year of the project. It provides an easy follow-up of how the work leading up to the Deliverable has 

addressed and contributed to four important project aspects: 

1. Strategic Objectives 

2. Project KPI 

3. Ethical aspects 

4. Risk management 

STRATEGIC OBJECTIVES 

Table 45 lists those strategic objectives of SCOREwater that are relevant for this Deliverable and gives a 

brief explanation on the specific contribution of this Deliverable. 

Table 45. Stocktaking on Deliverable’s contribution to reaching the SCOREwater strategic objectives. 

Project goal Contribution by this Deliverable 

SO3 Enable the monetization of water cycle 
data and create new markets and business 
opportunities for development and 
innovation of new products and services. 

By providing a set of data-driven models which can be 
considered new products or services  

SO 4 Demonstrate benefits of smart water 
management for increased water-system 
resilience against climate change and 
urbanisation 

By demonstrating relevant outcomes related to the 
data-driven models’ performance  

PROJECT KPI 

Table 46 lists the project KPI that are relevant for this Deliverable and gives a brief explanation on the 

specific contribution of this Deliverable. 

Table 46. Stocktaking on Deliverable’s contribution to SCOREwater project KPI’s. 

Project KPI Contribution by this deliverable 

KPI 3: Number of innovation tools that 
illustrate the use and potential of the 
SCOREwater 

Multiples smart services were designed throughout 
the D2.4 

KPI 4: Reduce the pollutant load from 
construction work in Gothenburg 

The data-driven model improves the management of 
pollution events though a preventive notification. 

ETHICAL ASPECTS 

Table 47 lists the project’s Ethical aspects and gives a brief explanation on the specific treatment in the 

work leading up to this Deliverable. Ethical aspects are not relevant for all Deliverables. Table 47 

indicates “N/A” for aspects that are irrelevant for this Deliverable. 
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Table 47. Stocktaking on Deliverable’s treatment of Ethical aspects. 

Ethical aspect Treatment in the work on this 
Deliverable 

Justification of ethics data used in project N/A 

Procedures and criteria for identifying research participants N/A 

Informed consent procedures N/A 

Informed consent procedure in case of legal guardians N/A 

Filing of ethics committee’s opinions/approval N/A 

Technical and organizational measures taken to safeguard data 
subjects’ rights and freedoms 

N/A 

Implemented security measures to prevent unauthorized access 
to ethics data 

N/A 

Describe anonymization techniques N/A 

Interaction with the SCOREwater Ethics Advisor N/A 

RISK MANAGEMENT 

Table 48 lists the risks, from the project’s risk log, that have been identified as relevant for the work on 

this Deliverable and gives a brief explanation on the specific treatment in the work leading up to this 

Deliverable. 

Table 48. Stocktaking on Deliverable’s treatment of Risks. 

Associated risk Treatment in the work on this Deliverable 

Low commitment of the partners to 
the project plan and deadlines 

All partners have been active and given input at time 

Lack of consensus on scientific or 
technological approach 

Consensus have been assured by Skype discussions 

Data from Cases are sparse and are 
not enough to apply all methods and 
tools 

Plan Skype discussion to improve of gathering data 

Outputs generated by the smart 
algorithms not as useful as expected 

Fine-tune of algorithms hyperparameters 

Creation of new features 

Integration of new data-sources 
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